GUJARAT TECHNOLOGICAL UNIVERSITY B. E. - SEMESTER – VI • EXAMINATION – WINTER 2012

Subject code: 160906 **Subject Name: Theory of Electromagnetics** Time: 02.30 pm - 05.00 pm **Instructions:**

Total Marks: 70

04

Date: 08/01/2013

1. Attempt any five questions.

2. Make suitable assumptions wherever necessary.

- 3. Figures to the right indicate full marks.
- 4. Bold letter indicates vector quantity.
- 0.1 (a) Define electric field intensity. Obtain the expression for the electric field intensity at a 07 point which is at a distance of R from a point charge Q. 03
 - Explain dot product and cross product of two vectors. **(b)**
 - (c) Explain unit vectors of Cartesian, Cylindrical and Spherical co-ordinate systems.
- (a) Derive expression of electric field intensity due to a uniform line charge over z-axis Q.2 07 having a charge density of $\rho_L C/m$.
 - Consider a cylindrical electron beam having length of 2 cm and radius 1 cm. The uniform **(b)** 07 charge density ρ_{ν} within the cylinder is $-5 \times 10^{-6} e^{(-10^{4}\rho z)}$ C/m³. Calculate the total charge enclosed in this cylinder. Use volume integral for this calculation. p is the shortest distance of the point from the axis of cylinder (the z- axis). For the calculation consider the electron beam between z = 2 cm and z = 4 cm.

OR

(b) (i) Consider a vector field $\mathbf{G} = y\mathbf{a}_x - 2.5x\mathbf{a}_y + 3\mathbf{a}_z$ and the point Q(4, 5, 2). Find (1) **G** 04 at Q, (2) the scalar component of G at Q in the direction of $\mathbf{a}_{N} = 1/3 (2a_{x} + a_{y} - 2a_{z})$, (3) the vector component of **G** at Q in the direction of \mathbf{a}_N and (4) the angle θ_{ca} between $\mathbf{G}(\mathbf{r}_{0})$ and \mathbf{a}_{N} . 03

(ii) Describe vector fields.

- 0.3 (a) State and explain gauss's law. Obtain expression of electric field intensity of line charge 07 using gauss's law.
 - Given the potential field, $V = 2x^2y 5z$, and a point P(-4, 3, 6), find following at point 07 **(b)** P: (1) the potential V, (2) the electric field intensity E, (3) the direction of E, (4) the electric flux density **D**, and (5) the volume charge density ρ_{u} .

OR

- (a) Derive Maxwell's first equation as applied to the electrostatics, using Gauss's law. Also **Q.3** 07 state the Divergence theorem.
 - State and Explain Lorentz force equation on charge particle. Also explain concept of 07 **(b)** magnetic torque.
- Explain an electric dipole. Also derive expression of **E** due to an electric dipole. 07 **Q.4** (a) 07
 - State and explain Ampere circuital law. **(b)**

OR

- (a) Write short note: Electrostatic boundary conditions between perfect dielectrics. Q.4
- **Q.4** Derive Poisson's and Laplace's equation. **(b)**
- State and Explain Biot-Savart's law for magnetic field. Using this law derive expression 0.5 07 (a) for magnetic field intensity at a point due to a finite length current element carrying current 'I' lying on z-axis in cylindrical co-ordinates. 07
 - (b) State and explain Stoke's theorem.

OR

(a) Write a short note on advantages and applications of numerical techniques in engineering. 07 Q.5 (b) Explain briefly finite element method. Also state the advantages and disadvantages of 07 finite element method.

07

07