GUJARAT TECHNOLOGICAL UNIVERSITY B. E. - SEMESTER – VI • EXAMINATION – WINTER 2012

Subject code: 161304Date: 05/01/2013Subject Name: Biological Process for Wastewater TreatmentTime: 02.30 pm - 05.00 pmInstructioner

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) In determining the BOD₅ of a sample, an analyst added 2, 5 and 10 mL of sample to three different 300-mL BOD bottles and filled them with seeded dilution water. The analyst also prepared three blank bottles with the same dilution water and incubated the set at 20°C for 5 days. Dissolved-oxygen (DO) measurements were made on the samples before and after with the following results.

Sample size in bottle, mL	Initial DO, mg/L	Final DO, mg/L
2	8.1	5.6
5	8.0	1.7
10	8.1	0.0
Blank average	8.2	8.0

What is BOD₅ for the sample?

- (b) Explain oxidation ditch in detail.
- Q.2 (a) An anaerobic reactor, operated at 35°C, processes a wastewater stream with a flow of 3000 m³/d and a bsCOD concentration of 5000 g/m³. At 95 percent bsCOD removal and a net biomass synthesis yield of 0.04 g VSS/g COD used, what is the amount of methane produced in m³/d?
 - (b) A sample of wastewater was incubated for 7 days at 20°C and BOD results is 490 mg/L. BOD rate constant $K = 0.1 \text{ day}^{-1}$. Calculate (i) 5 – day BOD (ii) 10 – day BOD and (iii) Ultimate BOD.

OR

(b)	Explain biochemistry of carbohydrates.	07
-------------	--	----

- Q.3 (a) Enlist and explain the basic steps involved in the overall anaerobic 07 oxidation of a waste.
 - (b) Explain with a neat block diagram municipal wastewater treatment plant. 07

OR

- Q.3 (a) Define: Mean Cell Residence Time (MCRT), Rate of oxygen uptake, 06 Maximum substrate utilization rate.
 - (b) Determine the values of bio-kinetic constants (K, Ks, Y, K_d and μ_{max}) using **08** the data in the following table, derived from the laboratory experiments

1

07

Model	Influent	Reactor	MCRT,	Reactor	Detention
No.	substrate	substrate	$\varTheta_{ m c}$,	biomass	time
	conc., S_0	conc., S	days	conc., X	(HRT) Θ ,
	mg/L	mg/L		mg/L	days
1	350	08	7.0	3900	0.18
2	350	12	4.5	2050	0.18
3	350	18	3.0	2850	0.18
4	350	48	1.6	1025	0.18
5	350	98	1.2	650	0.18

carried out on the CFSTR model of an activated sludge process with recycle.

Q.4 (a) Explain in detail: Oxygenation and mixing requirement for aerator(b) Explain role of microorganisms in wastewater treatment.

OR

- Q.4 (a) Enlist various anaerobic digesters used for sludge digestion and explain 07 any one in detail.
- Q.4 (b) Compute the mean cell residence time, recirculation ratio, and volume of a reactor from the following data to design a conventional activated sludge process. Compare the recirculation ratio if the effluent biomass concentration of 15 mg/L is considered in the mass balance analysis. Given data:
 - Daily average wastewater flow, $Q_{avg} = 20$ MLD
 - Sludge wasting flow, $Q_w = 140 \text{ m}^3/\text{d}$
 - Biomass concentration in reactor, X = 4000 mg/L
 - Returned sludge concentration, $X_r = 10000 \text{ mg/L}$
 - Hydraulic retention time, $\Theta = 4$ hours
- Q.5 (a) Write a short note on systems with packaged (pre-engineered) treatment 07 plants.
 - (b) Discuss the fundamental considerations in the application of natural 07 treatment systems.

OR

Q.5 (a) Explain wastewater collection system for small communities.
(b) Write a short note on constructed wetlands.
07

07

07