Se	at No.	Enrolment No.	
		GUJARAT TECHNOLOGICAL UNIVERSITY	
		B. E SEMESTER – VII • EXAMINATION – WINTER 2012	
Su	ıbjec	t code: 170203 Date: 01/01/2013	
	-	t Name: Vehicle Dynamics	
	-	10.30 am - 01.00 pm Total Marks: 70	
	struci	-	
111		. Attempt any five questions.	
	2	• • •	
	3	• Figures to the right indicate full marks.	
Q.1	(a)	A car moving on plain road has Static front Axle Weight $= 1000~\text{Kg}$, and Static Rear Axle Weight $= 500~\text{Kg}$, Wheel base $= 1.5~\text{meters}$ and Height of CG from ground at 200 mm. i) Find out distance of CG from front axle	07
		 ii) Calculate Dynamic Axle loads on front & rear Axles when Vehicle is accelerating on plain road at 19.62 m/sec². iii) Calculate Dynamic Axle loads on front & rear Axles when Vehicle is moving on a gradient of 15°. 	
	(b)	Give detailed explanation of main sources of Drag and types of Aerodynamic Aids used in passenger cars.	07
Q.2	(a)	Draw a neat sketches of the following:	
	()	i) SAE vehicle axis system.	02
		ii) Earth fixed coordinates system.	02
		iii) Tyre Axis System	03
	(b)	Explain the following:	
		i) Importance of Empirical & Analytical methods.	02
		ii) The concept of Euler Angles.	02
		iv) Construction of Bias & Radial tyre with the help of neat sketch.	03
	(b)	i) What are the basic functions of Tyres.	01
	(0)	ii) Explain the importance of Power to weight ratio in performance of vehicle.	03
		iii) Explain Anti lock braking system.	03
Q.3	(a)	Explain the concept of Ride performance and write detailed note about various	07
Q.C	(4)	Excitation forces, their impact on ride and damping characteristics.	07
	(b)	With the help of a neat sketch explain Arbitrary Forces acting on a Vehicle, at gradient θ and derive the equations for $W_f \& W_r$ OR	07
Q.3	(a)	Explain the following turning response properties:	07
	()	Under steer gradient.	
		Neutral steer.	
		Under steer.	
		Over steer.	
		Characteristic speed and Critical speed	
	(b)	1. Describe functions of Suspension and different types of suspensions.	05
		2. Effect of stiffer springs on Sprung mass natural Frequency and Effect of damping on suspension isolation behavior.	02
Q.4	(a)	i) Find Max Tractive force, F_{xmax} (for power limited acceleration).	07

ii) Find Max Tractive force, F_{xmax} (for Traction limited acceleration) in case of rear wheel drive independent rear suspension. Distance of CG = 2 m,

from Front axle.

iii) Find F_{xmax} , (for Traction limited acceleration) in case of front wheel drive with independent front suspension. Distance of CG = 1.2 m, from Front axle

The Vehicle is moving on level road and without hitch load, at a steady speed without acceleration. Assume the loss of tractive force due to inertia of engine, transmission, drive shaft & wheel is already included in the Combined

transmission efficiency of Transmission & Rear Axle, $\eta_{tf} = 0.90$ Following are the vehicle specifications:

- Weight of the vehicle acting at CG = 1800 kg.
- Maximum Engine Torque = 60 Kg-m
- 1^{st} Gear Ratio = 3.89
- Final Drive Ratio = 6.74
- Tyre Rolling Radius = 0.5 m
- Wheel Base = 3.2 m
- Height of CG = 0.7 m, from ground
- Coefficient of Friction at tyre & road contact area, $\mu = 0.7$
- (b) Draw a neat sketch of Pressure distribution along the centerline of a car and explain how the knowledge of Pressure distribution can be utilized.

OR

Q.4	(a)	Explain the following:	
		1. Cornering ability	01
		2. Directional response	01
		3. Handling	01
		4. Steering geometry errors.	02
		5. Define Roll over	02
Q.4	(b)	Explain the Tyre tractive properties in terms of Peak & Slide Coefficients of	07
		friction AND its dependence on Vertical Load, Inflation Pressure, Surface	
		Friction, Speed.	
Q.5	(a)	i) Write the differences between Disc brake system and Drum brake system.	03
		ii) A car having total weight of 2500 kg, is attempted to stop from 100 kms/hr	04
		speed find (a) how much energy will be absorbed due to braking. (b) The vehicle	
		if stopped within 6 sec, how much power is absorbed by braking system.	
	(b)	What is brake proportioning? With help of graph explain why it is important.	07
		OR	
Q.5	(a)	i) If a vehicle decelerates due to application of brakes at 2g deceleration, from its	05
		speed of 100 km/hr, what will be the stopping distance and stopping time for this	
		vehicle?	
		ii) explain the proportionality importance of stopping distance and stopping time	02
	(b)	Explain the following:	
		1. Anti Squat and Anti Dive Suspension Geometry.	04
		2. Define Roll Centre and Roll axis.	03
