	Sea	t No.:			En	rolment No		
		GUJAI	RAT TECI	HNOLOG	ICAL UN	IVERSIT	Y	
						WINTER 201		
	Subj	ect code: 17050	1		Date: 26/12/2012			
		ect Name: Cher		tion Engine	eering - I			
	-	e: 10.30 am – 01		8	Total Marks: 70			
		ructions:	noo buu					
	111.50	 Attempt any f Make suitable Figures to the All notations 	e assumptions right indicate	full marks.	-			
Q.1	(a)	(a) Discuss with examples, classification of reactions						0
	(b)	State various theories of temperature dependency, discuss any one in detail						0
Q.2	(a)	Discuss elementary and non-elementary reactions						0
	(b)	mechanism of reaction OR						0
	(b)							Δ
	(b)							0
		Calculate: i) rate of reaction						
		ii) time for attaining		sion				
		iii) conversion after 45 minutes						
Q.3		For a liquid phase reaction $2A \rightarrow$ Products derive integrated rate expression						0'
	(b)			000	212	222	1	0
		Temp. T° KRateconstant	$\frac{273}{246}$	293	313	333 5480 x 10 ⁻⁵	-	
		Rate constant k sec ⁻¹	2.46×10^{-5}	$4/.5 \times 10^{-5}$	$5/6 \times 10^{-5}$	5480 x 10°		
		Find energy of ac	tivation of the	abovo ropoti	07		J	
		This energy of ac						
Q.3	(a)	a) Derive integrated rate expression for an autocatalytic reaction						0
2.0		b) At certain temperature, the half-life period and initial concentration for a reaction are $t_{1/2} = 420 \text{ sec}$; $C_{A0} = 0.405 \text{ mole/lit}$ $t_{1/2} = 275 \text{ sec}$; $C_{A0} = 0.640 \text{ mole/lit}$						0
	(~)							Ū
		Calculate the order of reaction and rate constant of the reaction.						
).4	(a)							0
	(b)							0
	feed stream consist of 5 kmol/ m^3 of A and 100 kmol/ m^3 . What volumetric							
		and space time is required to obtain 60% conversion of limiting reactant. The reaction rate constant is $0.0001 \text{ m}^3/(\text{max})/(200 \text{ st})$ reaction temperature						
	rate constant is 0.0001 m ³ /kmol/sec at reaction temperature. OR							
Q.4	(a)	Derive performan	Derive performance equation for a Plug flow rector					
2.7	(b)	A homogeneous liquid phase reaction $A \rightarrow S$, $-r_A = kC_A^2$ takes place with 50%						0
	(~)	conversion in a mixed flow reactor. What will be conversion if this reactor is replaced						
		by another mixed					_	
		remaining unchan		2		e		
Q.5	(a)	Write in brief abo	out Recycle re	actor				0
	(b)	Discuss about rea	ctions in serie					0
_				-	R			
Q.5	(a)	Write short note on Optimum temperature progression Compare Integral method of analysis with differential method of analysis						(
2.0	(b)	a						(