Seat No.:	Enrolment No.
Jean 110	Lindingit 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

B. E. - SEMESTER - VII • EXAMINATION - WINTER 2012

).1	(a)			marks.			
	(b)	Define and			vater Treatment and tertiary		
2.2	(a)	Explain the mechanism of Reverse Osmosis and high light the advantage and disadvantages of RO.					
	(b)	What are refractory organics? Highlight the need for removal of refractory organics and TDS from wastewater. OR					
	(b)	With the help of neat sketches explain the modes of operation in membrane filtration unit of MBR.					
	(~)	A jar test was conducted using five dosages of PAC on waste water containing initial COD concentration as 200 mg/L. After a sufficient contact time the COD was tested again and following data was obtained. Plot the data according to Langmuir isotherm and determine the constants 'a' and 'b'.					
.3	(a)	initial COD COD was to	oconcentration as a second concentration as a second concentration and following second concentration as a second concentr	200 mg/L. After a suff lowing data was obtai	icient contact time the ned. Plot the data		
.3	(a)	initial COD COD was to	oconcentration as a second concentration as a second concentration and following second concentration as a second concentr	200 mg/L. After a suff lowing data was obtairm and determine the control of the c	icient contact time the ned. Plot the data		
.3	(a)	initial COD COD was to according to	O concentration as 2 ested again and fol o Langmuir isother	200 mg/L. After a suff lowing data was obtairm and determine the control of the c	icient contact time the ned. Plot the data constants 'a' and 'b'.		
3	(a)	initial COD COD was to according to	PAC concentration as 2 ested again and fol to Langmuir isother package.	200 mg/L. After a suff lowing data was obtairm and determine the continuous Initial concentration COD (mg/L)	Equilibrium concentration COD (mg/L)		
3	(a)	initial COD COD was to according to	PAC concentration (mg/L)	200 mg/L. After a suff lowing data was obtain and determine the contraction COD (mg/L) 250	Equilibrium concentration COD (mg/L)		
3	(a)	Flask no	PAC concentration (mg/L) 1.5 7.3	200 mg/L. After a suff lowing data was obtain and determine the continuous Initial concentration COD (mg/L) 250 250	Equilibrium concentration COD (mg/L) 55.0 19.7		
3	(a)	Flask no	PAC concentration as 2 ested again and fol to Langmuir isother PAC concentration (mg/L) 1.5 7.3 11.5	200 mg/L. After a suff lowing data was obtain and determine the continuous long linitial concentration COD (mg/L) 250 250 250	Equilibrium concentration COD (mg/L) 55.0 19.7 8.9		
3	(a)	Flask no Flask no 4	PAC concentration as 2 ested again and fol o Langmuir isother (mg/L) 1.5 7.3 11.5 11.7	200 mg/L. After a suff lowing data was obtain and determine the concentration COD (mg/L) 250 250 250 250	Equilibrium concentration COD (mg/L) 55.0 19.7 8.9 6.9		
3	(a)	Flask no	PAC concentration as 2 ested again and fol to Langmuir isother PAC concentration (mg/L) 1.5 7.3 11.5	200 mg/L. After a suff lowing data was obtain and determine the continuous long linitial concentration COD (mg/L) 250 250 250	Equilibrium concentration COD (mg/L) 55.0 19.7 8.9		
.3		Flask no Flask no 1 2 3 4 5	PAC concentration as 2 ested again and fol to Langmuir isother PAC concentration (mg/L) 1.5 7.3 11.5 11.7 17.6	200 mg/L. After a suff lowing data was obtain and determine the continuous long limital concentration COD (mg/L) 250 250 250 250 250 250	Equilibrium concentration COD (mg/L) 55.0 19.7 8.9 6.9 5.0		
3	(a) (b)	Flask no Flask no Prepare a li	PAC concentration as 2 ested again and fol to Langmuir isother PAC concentration (mg/L) 1.5 7.3 11.5 11.7 17.6 est of unit processes	200 mg/L. After a suff lowing data was obtain and determine the continuous long limital concentration COD (mg/L) 250 250 250 250 250 250	Equilibrium concentration COD (mg/L) 55.0 19.7 8.9 6.9 5.0 which fall under 'Advanced		
3		Flask no Flask no Prepare a li wastewater	PAC concentration as 2 ested again and fol to Langmuir isother PAC concentration (mg/L) 1.5 7.3 11.5 17.6 ast of unit processes treatment' along we have the statement along we have the statemen	200 mg/L. After a suff lowing data was obtain and determine the continuous concentration COD (mg/L) 250 250 250 250 250 250 250 es and unit operations with the purpose of each	Equilibrium concentration COD (mg/L) 55.0 19.7 8.9 6.9 5.0 which fall under 'Advanced		

reference to membrane filtration process.

		(iii) What is Trans Membrane Pressure?	
		OR	
Q.4	(a)	Draw a neat sketch and write short notes on: (i) Rotary drum filter (ii) Plate and frame Filter press	07
	(b)	Highlight the advantages and disadvantages of 'Ultra filtration' and 'Micro filtration'.	07
Q.5	(a)	Enlist and explain the Advanced Oxidation Processes for treatment of concentrated wastewaters.	07
	(b)	Write a short note on 'Water Softening'. Enlist and explain the different types of softening processes.	07
		OR	
Q.5	(a)	With the help of a neat sketch explain the "Electro dialysis" process.	07

(b) Explain the need for removal of nitrogen from wastewater. Ex[plain the

process of Nitrification and Denitrification for nitrogen removal.

(ii) Define the term "flux".

07