Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

B. E. - SEMESTER - VII • EXAMINATION - WINTER 2012

Subject code: 171503 Date: 01/01/2013

Subject Name: Resource optimization techniques

Time: 10.30 am - 01.00 pm Total Marks: 70

Instructions:

1. Attempt any five questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define OR. Discus its scope in Indian industries related to Industrial 07 engineering.
 - (b) Explain use of OR to solve any problem of industries for optimum solution 07 with OR phases.
- Q.2 (a) Find an initial basic feasible solution to the following T.P. using Vogel's 07 approximation method(test optimality also)

Destinations

		1	2	3	4	Availabilit
						у
	a	6	2	4	4	20
Origins	b	3	4	4	5	25
	С	5	3	3	2	30
	D	4	-1	4	1	30
Requirement		30	25	35	25	

(b) What is Linear programming? State the applications of it and also discuss its advantages in brief.

OR

(b) Explain in short:

07

- (a) feasible solution, (b) basic feasible solution
- (c) optimum solution,(d) non-degenerate feasible solution.
- Q.3 (a) Solve the following LPP.

07

Minimize 6x+10y+3z

Subject to
$$-x+y+z >= 1$$

$$3x+y-z>=2$$

$$X,y,z >= 0$$

(b) Explain the Kan DALL'S notation to represent a queuing model. Also **07** explain Balking and Jockeying in queuing.

OR

Q.3 (a) Solve the following LPP.

07

(b) Explain the following terms related to Game theory: A. Game,

B. mixed strategy,

C. Two person's zero sum game.

D. saddle point.

Q.4 (a) Solve the following sequential problem by graphical and arithmetic method: 07

job	Α	В	C	D	Е	X	Y	Z
Machine-A	6	5	23	17	11	14	10	7
Machine-B	8	12	14	10	22	9	5	23

(b) What are causes of replacement of a machine? How it can solve with OR?

OR

Q.4 (a) Prove that Dual of Dual ia a primal.

07

Minimize z=x1-3x2+2x3,

Subject to $3x1-x2+2x3 \le 8$,

$$-2x1+4x2 \le 11$$
,

$$-4x1+3x2+8x3 \le 12$$
,

$$X1,x2,x3>=0.$$

Formulate the dual LP.

Q.4 (b) Solve the following Game:

07

07

		Player-B			
	2	1	2	3	4
Player-A	0	-7	-4	1	2
	1	5	8	-3	2

Q.5 (a) Explain the following queuing model; $M/M/1 \otimes (\infty/fcfs)$.

07

Given an average arrival rate =8 per hour, average service time =5 minutes. Calculate the average queue length, waiting and idle time facilities.

(b) Solve the following assignment problem optimally:

07

			subject			
			S			
		1	2	3	4	5
	1	40	49	41	48	50
Faculty	2	33	36	30	34	37
	3	34	41	33	41	34
	4	24	33	43	40	40

OR

Q.5 (a) The probability Pn of failure just before n is shown in below. If individual replacement costs rs. 2.50 and group replacement costs rs. 0.50 per item. Find the optimum replacement solution.

n	1	2	3	4	5	6	7	8
pn	0.01	0.02	0.06	0.15	0.10	0.15	0.10	0.12

(b) What is degeneracy in transportation problem? Hove can it solve? 07
