GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV • EXAMINATION – WINTER 2013

BE - SEMESTER-IV • EXAMINATION – WINTER 2013			
Subject Code: 140102 Date: 26-12-2			
Su	Subject Name: Aerodynamics I		
Time: 02:30 pm to 05:00 pm Total Marks: '			
Instructions:			
		Attempt all questions. Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
0.1			07
Q.1	(a) (b)	Derive momentum equation in cartesian coordinate system Explain airspeed measurement in supersonic flow and derive airspeed equation	07 07
	(0)	for the same.	07
0.2			07
Q.2	(a)	Define (1) angular rotation, (2) vorticity, (3) circulation, (4) stream function (5) velocity potential, (6) irrotational flow and (7) rotational flow	07
	(b)	Show that free vortex is an example of irrotational motion	07
		OR	
	(b)	Define doublet and derive equation for stream function and velocity potential	07
		for doublet.	
Q.3	(a)	Explain flow past circular cylinder and show pressure distribution around	07
	(b)	cylinder	07
	(b)	Show that the potential function $\phi = \frac{ax}{(x^2 + y^2)}$ represents the flow generated by	07
		doublet. In which direction is the doublet oriented?	
		OR	
Q.3	(a)	Explain flow past rotating circular cylinder and show pressure distribution	07
	(b)	around cylinder A cylinder of radius 4cm is held with its centre at the point (0,0) in a fluid	07
	(0)	stream. At large distances from the cylinder the fluid velocity is constant at	07
		30 ms ⁻¹ parallel to the x axis and in the direction of x increasing. Calculate the	
		components of the fluid velocity at the point $x = -4$ cm and $y = 1$ cm.	
Q.4	(a)	Explain pressure distribution on an airfoil with respect to various angles of	07
		attack.	07
	(D)	Explain shock expansion theory OR	07
Q.4	(a)	Explain various types of drags on an airfoil	07
•	(b)	What is a stagnation point and stagnation property? Derive equations for	07
		stagnation temperature, pressure and density	
Q.5	(a)	Explain how shock wave generated? Explain oblique shockwave, normal shock	07
		wave, expansion wave and Mach wave.	0-
	(b)	Prove that shockwave is irreversible and Mach number downstream the normal shockwave is always less than unity	07
		OR	
Q.5	(a)	Explain supersonic flow past wedge. Also explain variation of wedge angle and	07
		Mach number on shock strength and shock angle.	~-
	(b)	Write notes on shock interaction and reflection	07
