GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV • EXAMINATION – WINTER 2013

Subject Code: 140504

Date: 30-12-2013

Subject Name: Fundamental of Chemical Engineering Calculations And Stoichiometry

Time: 02:30 pm to 05:00 pm

Total Marks: 70

10

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- 4. Atomic Weights: C-12, H-1, O-16, S-32, Zn-65, K-39, Mg-24, N-14, Cu-63.5, Fe-55.8, Ca-40, Na-23, Cl-35.5
- Q.1 (a) H_2SO_4 solution has a molarity of 11.24 and molality of 94. Calculate the 04 density of the solution.
 - (b) The analysis of the gas sample is given below (on volume basis): CH₄=66%, CO₂=30%, NH₃=4%
 Find (1) The average molecular weight of the gas and (2) Density of the gas at 202.65 kPa g pressure and 303⁰ K.
- Q.2 (a) (1) The diameter and height of a vertical cylindrical tank are 5 ft and 6 ft 6 05 inch respectively. It is full up to 50% height with water, the density of which is 1 kg/liter. Find the mass of water in kilograms and pounds.
 (2) Iron metal weighing 500 lb occupies a volume of 29.25 liter. Calculate the density of iron in kg/m³.
 - (b) The average molecular weight of a flue gas sample is calculated by two 07 different engineers. One engineer uses the correct molecular weight of 28 for N_2 and determines the average molecular weight to be 30.08; the other engineer uses an incorrect value of 14, and calculates the average molecular weight to be 18.74. Calculate:

(1)Find the volume % of N_2 in the flue gas.

(2)If the remaining components of the flue gas are CO_2 and O_2 ; find the volume % of each of them.

OR

- (b) The gas phase reaction $A \rightarrow 2B + C$ takes place isothermally in a constant 07 pressure reactor. Starting with a mixture of 75% A and 25% inert (both on volume basis), in a specified time the volume doubles [i.e. final volume = 2(initial volume)]. Compute the percent conversion of A achieved.
- Q.3 (a) It is desired to have a mixed acid containing 40% HNO₃, 43% H₂SO₄ and 17% 07 H₂O by weight. Sulfuric acid of 98% by weight is available. Calculate (1) The strength of nitric acid and (2) the weight ratio of sulfuric acid to nitric acid.
 - (b) 10000 kg/h of solution containing 20% methanol is continuously fed to a 07 distillation column. Distillate (product) is found to contain 98% methanol and waste solution from the column carries 1% methanol. All percentages are by weight. Calculate (1) the mass flow rates of distillate and bottom product and (2) the percent loss of methanol.

OR

Q.3 (a) A single effect evaporator is fed with 10000 kg/h of weak liquor containing 04 15% caustic by weight and is concentrated to get thick liquor containing 40% by weight caustic (NaOH). Calculate: (1) kg/h of water evaporated and (2) kg/h of thick liquor obtained.

	(b)	2000 kg of wet solids containing 70% solids by weight are fed to a tray drier where it is dried by hot air. The product finally obtained is found to contain 1% moisture by weight, calculate: (1) the kg of water removed from wet solids, (2) the kg of product obtained. Define following with respect to Humidification operation: (1)Absolute humidity (2)Molar humidity	06 04
	(c)	(3)Relative humidity (4)Dry bulb temperature	04
Q.4	(a)	Define following with respect to material balance with chemical reaction:(1)Stoichiometric coefficient(2)Limiting Reactant(3)Excess Reactant(4)Percent Excess(5)Conversion(6)Yield	06
	(b)	A combustion chamber is fed with butane and excess air. Combustion of butane is complete. The composition of combustion gases on volume basis is given below: $CO_2=9.39\%$, $H_2O=11.73\%$, $O_2=4.70\%$ and $N_2=74.18\%$ Find percent excess air used and mole ratio of air to butane used. OR	08
Q.4	(a)		08
	(b)	Calculate the consumption of 96% NaCl and 93% H_2SO_4 to produce 500 kg of HCl if the conversion is 92%. HCl is produced according to the reaction: 2NaCl + $H_2SO_4 \rightarrow Na_2SO_4 + 2HCl$	06
Q.5	(a)	Define following with respect to energy balance:(1)Heat Capacity(2)Standard heat of reaction(3)Heat of Combustion(4)Standard heat of formation	04
	(b)	Discuss the importance of recycle and bypassing operation. Methane gas is heated from 303° K to 523° K at atmospheric pressure.	04 06
	(c)	Calculate the heat added per kmol methane using C_p^{0} data given below. $C_p^{0} = a+bT+cT^2+dT^3$, kJ/kmol-K For Methane, a=19.2494, b×10 ³ =52.1135, c×10 ⁶ =11.973, d×10 ⁹ = - 11.3173.	vu
		OR	
Q.5	(a)	Calculate the energy required to dissociate 1 kg of sodium bicarbonate at 298 K. The dissociation reaction is: $2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$ ΔH_f^0 in kJ/mol at 298 ⁰ K for components is given below. NaHCO_3(s) = - 950.81, Na_2CO_3(s) = - 1130.68, $CO_2(g) = - 393.51, H_2O(g) = - 241.82$	05
	(b)	A heat exchanger for cooling hot oil uses 10000 kg/hr of cooling water, which enters the exchanger at 294° K. The hot oil at the rate of 5000 kg/hr enters at 423° K and leaves at 338° K and has an average heat capacity of 2.51 kJ/kg- $^{\circ}$ K. Calculate the outlet temperature of the water. A gas mixture has the following composition by volume:	04
	(c)	$SO_2 = 8.5\%$, $O_2 = 10\%$, $N_2 = 81.5\%$. Find out the composition of gas mixture by weight.	05
