GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV • EXAMINATION - WINTER 2013

Subject Code: 142401

Date: 19-12-2013

Subject Name: Electro Mechanical Energy Conversion - I Time: 02:30 pm to 05:00 pm **Total Marks: 70 Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- (a) Explain the zero power factor method for determining the voltage regulation of a three-07 Q.1 phase alternator.
 - (b) Explain the working principle of single-phase repulsion motor with necessary diagram. 07
- Q.2 (a) Explain the theory of production of rotating field in three-phase induction motor with 07 three-phase supply.
 - **(b)** Explain the construction and working of permanent magnet stepper motor. List the 07 advantages and disadvantages of permanent magnet stepper motor.

OR

- (b) Define pitch factor and distribution factor. Derive the equation of the induced emf for 07 three-phase alternator. 07
- Explain the characteristics of separately-excited dc generator. **Q.3** (a)
 - A shunt generator delivers 195 A at terminal voltage of 250 V. The armature resistance 07 **(b)** and shunt field resistances are 0.02 Ω and 50 Ω respectively. The iron and friction losses equal 950 W. Find (i) E.M.F. generated (ii) Cu losses (iii) output of the prime mover and (iv) mechanical and electrical efficiencies.

OR

Q.3	(a)	Explain the external and internal characteristics of dc shunt generator.	07
	(b)	A 200 V dc shunt motor takes 4 A at no-load when running at 700 rpm. The field	07
		resistance id 100 Ω . The resistance of armature at standstill gives a drop of 6 volts	
		across armature terminals when 10 A were passed through it. Calculate (i) speed on load	
		(ii) torque in N-m and (iii) efficiency. The normal input of the motor is 8 kW.	
Q.4	(a)	Explain the iron losses of dc machine.	06

Explain the flux control method and Ward-Leonard system of speed control of dc shunt 08 **(b)** motor.

OR

- Q.4 Explain the voltage build-up of dc shunt generator. State the conditions for the build-up 06 (a) of dc generator.
 - Discuss the necessity of starter. Explain the three-point starter with neat diagram. **(b) 08**
- Q.5 Write a technical note on "Auto Transformer". 07 (a) Obtain the equivalent circuit of a 200/400 V, 50 Hz, 1-phase transformer from the 07 **(b)** following test data. O.C. test : 200 V, 70 W - on L.V. side 0.7 A,
 - S.C. test : 15 V, 10 A. 85 W - on H.V. side OR
- Derive the equation for the torque of three-phase induction motor under running **Q.5** 07 (a) condition. Derive the condition for the maximum torque under running condition.
 - A 150 kW, 300 V, 50 Hz, 6-pole star connected induction motor has a star connected 07 **(b)** slip-ring rotor with a transformation ratio of 3.6(stator/rotor). The rotor resistance is 0.1 Ω /phase and it's per phase leakage reactance is 3.61 mH. The stator impedance may be neglected. Find the starting current and starting torque on rated voltage with shortcircuited slip rings.
