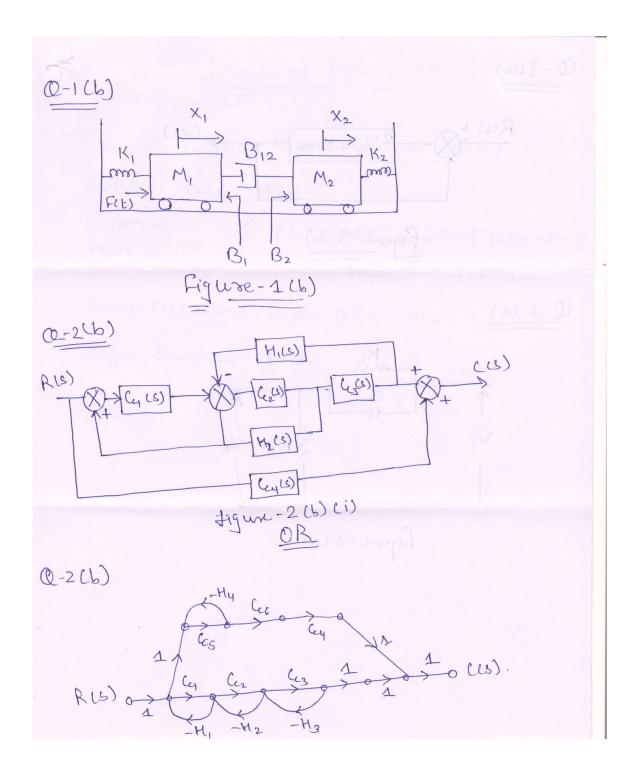
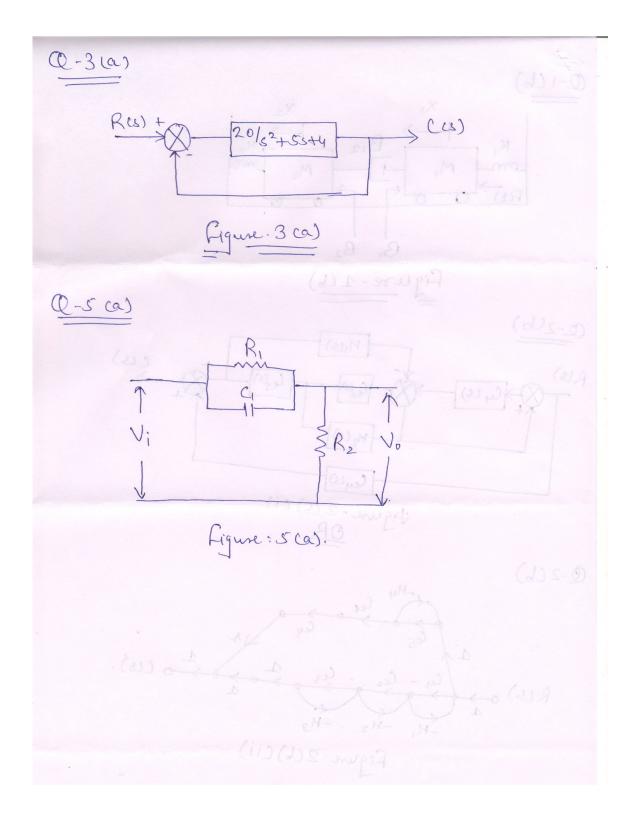
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI • EXAMINATION – WINTER 2013

BE - SEMESTER-VI • EXAMINATION – WINTER 2013						
	Code: 160104 Date: 06-12-2013 Name: Basic Control Theory					
Time: 02:30 pm to 05:00 pm Total Marks: 7						
Inst	Instructions:					
		Attempt all questions. Make suitable assumptions wherever necessary.				
		Figures to the right indicate full marks.				
Q.1	(a)	Define transient response specifications with neat diagram along with	07			
		equations.				
	(b)	Find system equation and derive $F \rightarrow I$ analogy network for fig.1 (b).	07			
Q.2	(a)	An unity feedback system has a loop transfer function	07			
		$\mathbf{G}(\mathbf{s}) = \frac{10(\mathbf{s}+1)}{10(\mathbf{s}+1)}$				
		s(s+2)(s+5)				
		Determine (i) Stability gain (ii) step, ramp, parabolic coefficients (iii) e_{ss} when $r(t)=3+10t$.				
	(b)	Reduce the following block diagram in fig.2 (b) (i) to open loop form using	07			
	(-)	block diagram reduction technique.				
		OR				
	(b)	Using Manson's Gain formula find $C(s)/R(s)$.Refer fig.2 (b) (ii).	07			
Q.3	(a)	The characteristic equation of a feedback system is	07			
		$F(s) = s^{6} + 2s^{5} + 8s^{4} + 12s^{3} + 20s^{2} + 16s + 16$				
	(1)	Using the Routh's Hurwitz criterion determine the stability of the system.	~ -			
	(b)	A unity feedback system has $C(a) = K(a+1)$	07			
		$G(s) = \frac{K(s+1)}{s^2(s+2)(s+5)}$				
		Using Routh's Hurwitz criteria find the range of K for closed loop system to be				
		stable.				
		OR				
Q.3	(a)	For the system shown in fig.3 (a) with unity feedback find the time domain	07			
	(h)	specification when a unit step i/p is applied.	07			
	(b)	Calculate the transient response parameters for the given system with $i/p r(t)=2t$.	07			
		G(s) = 6/s(s+4).				
0.4	(\mathbf{a})		07			
Q.4	(a)	Draw the root locus for the system and obtain value of K when ζ =0.6 from root locus.	07			
		G(s) = K/s(s+3)(s+6)				
	(b)	The open loop transfer function of a system $G(s) = K/s(s+2+2j)(s+2-2j)$.	07			
		Determine the complete root locus and comment on the stability of the closed				
		loop system.				
<u> </u>		OR	~-			

Q.4 (a) Sketch bode plot for the following system and find gain margin, phase margin, 07 gain crossover frequency and phase crossover frequency.


$$G(s) = \frac{4(s+0.5)}{s(s+0.2)(s+1)}$$


(b) Sketch bode plot for the following system and determine gain margin, phase 07 margin and stability of system.

$$G(s) = \frac{25(s+4)}{s(s+1)(s+10)}$$

Q.5	(a)	Define transfer function. Find the transfer function of the lead compensator for the network shown in fig.5 (a).	07
	(b)	Draw the polar plot of $GH(s)=100/(s+2)(s+4)(s+8)$.	07
	(0)	OR	07
Q.5	(a)	Find the eigen values for the following matrix.	07
		0 1 0	
		A = 0 0 1	
		-6 -11 -6	
	(b)	Draw the Nyquist plot for the system given below. Determine phase crossover	07
		frequency, gain crossover frequency, gain margin and phase margin.	
		G(s)H(s)=10/1+0.2(1+0.02s)	
