Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII • EXAMINATION - WINTER 2013

Subject Code: 170501 Subject Name: Chemical Reaction Engineer Time: 10:30 TO 01:00 Instructions:					Date: 26-11-2013			j
					eering - I Total Marks: 70			
	2. I 3. I	Attempt all questions. Make suitable assumptions v Figures to the right indicate All notations have conventio	full marks	5.				
Q.1	(a)	What is steady state appr suggested mechanism of r		? Explain	how this co	oncept hel	ps to test the	e 07
	(b)	Discuss various forms of r		on				07
Q.2 (a) Discuss and define Molecularity and order of reaction							07	
(b) List various methods for finding order of reaction, explain any one in deta					n detail.	07		
OR								
(b) State various theories of temperature dependency, discuss any one in detai							detail	07
Q.3	(a) (b)							
		Time, min	0	1	2	3	4	
		Concentration mole/lit	0.16	0.113	0.08	0.056	0.040	

OR

- Q.3 (a) Show how rate constants are evaluated for irreversible reactions in parallel. 07
 - (b) The rate of bimolecular reaction at 500° K is 10 times the rate at 400° K. 07 Calculate the activation energy of reaction by Arrhenius law and collision theory. 07
- (a) Derive performance equation for a CSTR. **Q.4**
 - (b) A reaction $A \rightarrow Products$ is carried out in a batch reactor at different initial 07 concentrations. The half-life for each run is noted. Evaluate order of reaction and rate constant from the half-life data as given in the following table:

C _{A0} kmol/m ³	10	18.5	30
t _{1/2} , sec	100	54	33.3
		OR	

		UK UK	
Q.4	(a)	Derive performance equation for a Batch reactor	07
	(b)	In a batch reactor the conversion of a liquid reactant A is 70% in 13 min. Find the	07
		space time required to effect this conversion in a plug flow reactor and a mixed	
		flow reactor. Assume first order kinetics	
Q.5	(a)	Write a short note on 'Heat of reaction from thermodynamics'	07
	(b)	Discuss equal sized mixed flow reactors in series.	07
		OR	
Q.5	(a)	Discuss in detail about 'Searching for mechanism'	07
	(b)	Write a brief note on 'Variable volume batch reactor'	07
