GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII • EXAMINATION – WINTER 2013

Subject Code: 170804 Date: 28-1			-2013	
Tim	Subject Name: Discrete Time Signal Processing Time: 10:30 TO 01:00 Total Marks Instructions:			
mou	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	With the help of mathematical expression and suitable figure explain the following functions:(i) Unit step function (ii) Impulse function (iii) Complex exponential	07	
	(b)	sequences. The input x(t) and the impulse response h(t) of a continuous time LTI system are given by x(t) = u(t) and h(t) = $e^{-\alpha t}$ u(t), $\alpha > 0$. Compute the output, y (t) given by y(t) = x(t) * h(t).	07	
Q.2	(a)	Find the z-transform X (z) and sketch the pole-zero plot with the ROC for the following sequence: $x[n] = (1/2)^n u(n) + (1/3)^n u(n)$.	07	
	(b)		07	
	(b)	OR Using partial-fraction expansion find the inverse z-transform of the following: $X(z) = z/(2z^2 - 3z + 1), z < 1/2$	07	
Q.3	(a)	What are the conditions for convergence of Fourier Transforms? Write down	07	
C ¹²	(b)	the properties of Fourier Transform.(i) Find the Fourier transform of the rectangular pulse signal x(t) defined by	07	
	()	$x(t) = p_a(t) = \begin{cases} 1 & t < a \\ 0 & t > a \end{cases}$		
		(ii) Plot its magnitude spectrum. OR		
Q.3	(a)	Verify the following property of Fourier Transforms (i) Time-shifting property: $x(t - t_0) \leftrightarrow e^{-j\omega t_0} X(\omega)$ (ii) Frequency-shifting property: $x(t) e^{-j\omega t_0} \leftrightarrow X(\omega - \omega_0)$	07	
	(b)		07	
Q.4	(a) (b)	Explain circular convolution with example. Compute 4- point DFT of causal three sample sequence given by: $x(n) = 1/3$; $0 \le n \le 2$ = 0; else	07 07	
Q.4	(a)	OR Define Discrete Fourier Transforms (DFT) and inverse Discrete Fourier	07	
ייע		Transforms (IDFT) with the help of suitable mathematical expressions.		
	(b)	Compute circular convolution of the following two sequences using DFT: $x(n) = \{ \begin{array}{c} 1, 0.5 \} \text{ and } h(n) = \{ \begin{array}{c} 0.5, 1 \} \\ \uparrow \end{array} \}$	07	

Q.5	(a)	Define Fast Fourier Transform (FFT). Make a detailed comparison between	07
	(b)	DFT and FFT. What is decimation in frequency Radix-2 FFT? Explain.	07
	(U)	OR	07
Q.5	(a)	Differentiate between discrete time IIR and FIR systems. Explain structure	07
	(b)	for realization of IIR systems. Explain Filter design by Impulse Invariance technique.	07
