Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY B. E. - SEMESTER - I • EXAMINATION - WINTER • 2014

Subject code: 110015 Date: 05-01-2015 Subject Name: Vector Calculus and Linear Algebra Time: 10:30 am - 01:00 pm **Total Marks: 70 Instructions:**

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (1) Solve the following system of equations (if possible) using Gauss eliminatin (14)method. 2x + y - z = 4, x - y + 2z = -2 -x + 2y - z = 2
 - (2) If for two vectors \overline{a} and \overline{b} , $|\overline{a} + \overline{b}| = |\overline{a} \overline{b}|$. Find angle between \overline{a} and \overline{b} .
 - (3) Show that the linear operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by the equation $w_1 = 2x + y$, $w_2 = 3x + 4y$ is one-one and find $T^{-1}(w_1, w_2)$.
 - (4) Prove or disprove that the set $W = \{(a, 2a, a+1) \mid a \in R\}$ is or not vectorsubspace of R^3 .
 - (5) Find two vectors in R^2 with Euclidian Norm whose inner product with (-3,1) is zero.
 - (6) Find the eigenvalue and eigenvector of the matrix $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$.
 - (7) Let S = { v_1, v_2, v_3 } be the basis for R^3 in the $v_1(1,2,1)$ $v_2(2,9,0)$ $v_3(3,3,4)$ find the coordinate vector of V = (5, -1, 9).
- Q.2 (a) (1) Find A^{-1} by Gauss Jordan method where $A = \begin{bmatrix} 2 & 6 & 6 \\ 2 & 7 & 6 \\ 2 & 7 & 7 \end{bmatrix}$. (3)
 - (2) Solve following equation by Cramer's rule. x + 2z = 6, -3x + 4y + 6z = 30, -x - 2y + 3z = 8.
- (b) (1) Investigate for what values of λ and μ the equations (4)x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ have (i)no solution (ii) a unique solution (iii)an infinite number of solution.
 - (2) Reduce the following matrix into reduced raw echelon form

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & -1 \\ -2 & -1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$

Q.3 (1) Determine which sets are vector space or not under the giver operation. The set all triple of real no $\{x, y, z\}$ with the operations (5)

$$(x, y, z) + (x', y', z') = (x + x', y + y', z + z')$$
 and $(x, y, z) = (kx, y, z)$

(2) Define basis and Determine the dimension and basis for the solution space of

(4)

(3)

the system 3x + y + z + w = 0 5x - y + z - w = 0 (4)

(3) State Dimension theorem and verify that for the given matrix

$$A = \begin{bmatrix} 2 & 2 & -1 & 0 & 1 \\ -1 & -1 & 2 & -3 & 1 \\ 1 & 1 & -2 & 0 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$
(5)

Q.4 (1) Consider the basis S = { v_1, v_2, v_3 } for R^3 , $v_1(1,2,1)$ $v_2(2,9,0)$ $v_3(3,3,4)$ and let

 $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation such that $T(v_1) = (1,0)$ $T(v_2) = (-1,1), T(v_3) = (0,1)$. Find a formula for $T(x_1, x_2, x_3)$ and use the form formula to find T(7,13, 7). (5)

(2) Determinew whether the given vectors $v_1 = (2, -1, 3)$ $v_2 = (4, 1, 2)$ $v_3 = (8, -1, 8)$ span R^3 . (3)

(3)Let $v_1 = (1, -1, 0)$ $v_2 = (0, 1, -1)$ $v_3 = (0, 0, 1)$ be elements in \mathbb{R}^3 . Verify the set of vectors (v_1, v_2, v_3) is linearly independent or linearly dependent. (3)

(4)Find the basis for the raw space for the matrix A

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}$$
(3)

(3)

(3)

(4)

Q.5 (1) Find the eigenvalue and eigenvector for the matrix

$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$

(2) find a matrix P that diagonalizes A and determine $p^{-1}AP$ (5)

$$A = \begin{bmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

(3) Verify Caley-Hamilton theorem for the matrix.

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

(4) Reduce the quadratic form $Q(x,y,z) = 3x^2 + 3z^2 + 4xy + 8xz + 8yz$ (3) into canonical form using linear transformation.

Q.6 (1) Let V be an inner product space and let $u, v \in V$ Prove that

$$\langle u, v \rangle = \frac{1}{4} \| u + v \|^2 - \frac{1}{4} \| u - v \|^2$$
⁽²⁾

(2) Let $u = (u_1, u_2)$ and $v = (v_1, v_2)$ be a vector in R^2 Verify that the weighted Euclidean inner product on $R^2 \langle u, v \rangle = 3u_1v_1 + 2u_2v_2$. (3) Let R^3 have the Euclidean inner Product. Use the Gram-Schmidt process to transform the bases $\{u_1, u_2, u_3\}$ into orthogonal bases $u_1 = (1, 1, 1)$

$$u_2 = (-1,1,0)$$
 $u_3 = (1,2,1)$ (4)

(4) Find a least square solution of the inconsistent system Ax=b for

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}.$$
(4)

Q.7 (1) If
$$\phi = 3x^2y - y^3z^2$$
, find the grad ϕ at the point (1,-2,-1). (2)

- (2) Find the directional derivative of $\phi = 4xz^3 3x^2y^2z$ at the point (2,-1,2) in the Direction (2,3,6). (4)
- (3) Using Green's theorem ,evaluate $\oint_{c} (3x^2 8y^2)dx + (4y 6xy)dy$ Where c is the

Boundary of the region boubded by $y^2 = x$ and $x^2 = y$. (4) (4) Evaluate $\iint 6xyds$ where s is the portion of the plane x + y + z = 1 that lies in front of

(4) Evaluate $\iint_{s} 6xyds$ where s is the portion of the plane x + y + z = 1 that lies in front of Yz plane (4)
