Seat No.:	Enrolment No.
-----------	---------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III • EXAMINATION – WINTER • 2014

	Sul	bject Code: 132102 Date: 30-12-2014	
	Sul	bject Name: Metallurgical Thermodynamics	
		me: 02.30 pm - 05.00 pm Total Marks: 70	
	Inst	tructions:	
		1. Attempt all questions.	
		2. Make suitable assumptions wherever necessary.	
		3. Figures to the right indicate full marks.	
Q.1	(a)	i) What is the effect of pressure on Phase transformation?	0.
		ii) Explain how the liquidus line is obtained for any eutectic system.	04
	(b)	i) What is Gibb's phase rule? Explain the importance of phase rule. Derive Gibb's phase	04
		rule.	
		ii) Explain the differences between a liquidus line and solidus line.	0.
Q.2	(a)	Explain how Ellingham diagrams can be useful in the extractive metallurgical process.	0′
	(b)	i) Explain C- CO & C-CO ₂ line in the Ellingham diagram?	04
		ii) Explain the advantages and limitations of Ellingham diagram.	0.
		OR	_
	(b)	i) State & Define 1 st law of Thermodynamics & its Significance.	04
		ii) Explain Quasi- static process.	0.
Q.3	(a)	Define and explain the terms specific heat at constant pressure (Cp) and specific heat at	0
		constant volume (Cv) and derive the thermodynamics relationship between them.	
	(b)	What is the importance of equilibrium constant (K) & how this can be calculated from	0
		standard free energy changes?	
		OR	
Q.3	(a)	i) Prove that when HENRY'S law is obeyed by the solute, solvent obeys Raoult's law.	04
		ii) Draw free energy- composition diagram for Isomerphous system at various phases.	0.
	(b)	i) Distinguish between ideal solutions and regular solutions.	02
	(D)	ii) Derive Gibb's- Duhem equations.	05
		n) Derive Glob 5 Dunem equations.	0.
Q.4	(a)	Zinc melts at 420 °C and its standard entropy at 25 °C is 9.95 cal/deg/ mole.	0
	()	Calculate the standard entropy of Zinc at 750 °C. Heat of fusion of Zn at the melting	
		point is $H_f = 1.74 \text{ KCal/m}$.	
		Given Data	
		$\Delta S^{0}_{298} = 9.95 \text{ Cal/ d/m}.$	
		$Cp < Zn > = 5.35 + 2.40* 10^{-3} T Cal/d/m.$	
		$Cp\{Zn\} = 7.50 \text{ Cal / d/m}$	
	(b)	' 1 1	04
		ii) State & Derive Entropy of a system.	0.
		OR	

Q.4	(a)	i) The enthalpy changes for the following reactions are as follows $2B + 3H_2 + 3O_2 = 2H_3BO_3. \qquad \Delta H^0_{298} = -512.8 \text{ Kcal.}$ $B_2O_3 + 3H_2O \text{ (l)} = 2H_3BO_3. \qquad \Delta H^0_{298} = -4.12 \text{ Kcal.}$ $H_2 + \frac{1}{2}O_2 = H_2O \text{ (l)}. \qquad \Delta H^0_{298} = -68.73 \text{ Kcal. Calculate the standard heat of}$	04
		formation of B_2O_3 in terms of per mole o B_2O_3 & per gm of B_2O_3 . Atomic wt of B & O are 10.82 & 16.	
		ii) Calculate the work done in Reversible Adiabatic expansion.	03
	(b)	i) State and explain Sievert's law.ii)State & Derive Maxwell's equation from combined statement of 1st & 2nd law.	03 04
Q.5	(a)	i) Calculate the equilibrium constant for the reaction. $ <\!\! \text{NiO} > + (H_2) = <\!\! \text{Ni} > + (H_2\text{O}) \text{ at } 1023 \text{ K} $ $<\!\! \text{Ni} > + \frac{1}{2} \left(\text{O}_2 \right) = <\!\! \text{NiO} > \Delta \text{G}^0_{298} = -58,450 + 23.55 \text{T cal.} $ $ (\text{H2}) + \frac{1}{2} \left(\text{O}_2 \right) = (\text{H}_2\text{O}) \Delta \text{G}^0_{298} = -58,900 + 13.1 \text{T cal.} $ Could pure Ni sheet be annealed at 1023 K in an atmosphere of 95% H ₂ O & 5% H ₂ by volume with oxidation?	05
		ii) Explain fugacity.	02
	(b)	i) The equation of the state of a gas is given by the expression $(P + a/V^2)$. $(V-b) = RT$ Prove that : $(\delta P / \delta V)_T * (\delta V / \delta P)_T = 1$	04
		ii) Explain Homogenous & Heterogeneous system.	03
0 =		OR	
Q.5	(a)	What is blast f/c slag & its composition, Explain briefly the kinetics of Slag- metal reaction.	07
	(b)	Explain the following: (i) Chemical Potential (ii) Slag basicity (iii) Hess's Law	03 02 02
