GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV • EXAMINATION - WINTER • 2014

Subject Code: 140001 **Subject Name: Mathematics - IV**

Date: 19-12-2014

Time: 02:30 pm - 05:30 pm

Total Marks: 70

04

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary. 2.
- 3. Figures to the right indicate full marks.

Find the principal argument Arg z, when $z = \frac{-2}{1+\sqrt{3}i}$. Q.1 **(a)** 03 (i) (ii) Sketch the following sets and determine which are domains :

- (a) Im z > 1(b) $0 \le \arg z \le \frac{\pi}{4}$
- (b) (i) Using the definition of limit, show that if f(z) = iz in the open disk 04 |z| < 1, then $\lim_{z \to 1} f(z) = i$
 - 03 (ii) Show that $f(z) = |z|^2$ is continuous at each point in the plane, but not differentiable.

(a) (i) Define the singular point of the function and state where the function 0.2 03 $f(z) = \frac{z^2+1}{(z+2)(z^2+2z+2)}$ is analytic?

(ii) show that
$$\overline{\sin(iz)} = \sin(i\overline{z})$$
 if and only if $z = n\pi i$ $(n \in \mathbb{Z})$ 04

- (b) (i) If C is any simple closed contour, in either direction, then show that 03 $\int_C \exp(z^3) \, dz = 0$
 - (ii) Find the value of integral $\int_c \bar{z} \, dz$ where c is the right-hand half 04 $z = 2 e^{i\theta} \left(\frac{-\pi}{2} \le \theta \le \frac{\pi}{2}\right)$ of the circle |z| = 2, from z = -2i to z = 2i.

OR

(b) (i) If
$$f(z)$$
 is analytic function, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \log |f'(z)| = 0.$ 04

(ii)Examine the analyticity of sinh z. 03

(a) Define residue at simple pole and find the residues of the function **Q.3** $f(z) = \frac{z^2 - 2z}{(z+1)^2 (z^2+4)}$ at each of its poles in the finite z-plane. 07

(b) State and Prove Cauchy's Integral formula. 07 OR

Q.3 (a) Expand
$$f(z) = \frac{-1}{(z-1)(z-2)}$$
 in the regions (a) $|z| < 1$ (b) $1 < |z| < 2$
(c) $|z| > 2$ 07

(b) Write Stirling's interpolation formula and find the value of f(2.73), using Bessel's interpolation formula up to four differences, from the following table

	-		-			
x	2.5	2.6	2.7	2.8	2.9	3.0
f(x)	0.4938	0.4953	0.4965	0.4974	0.4981	0.4987

(a) 1. Evaluate $\int_0^1 \exp(-x^2) dx$ by using the Gaussian integration formula for n = 3. 03 Q.4 2. Solve the following system of equations using Gauss-Seidel method correct up to three decimal places.

$$60x - 4y + 6z = 150, 2x + 2y + 18z = 30, x + 17y - 2z = 48$$

(b) State Trapezoidal rule with n = 10 and using it, evaluate $\int_0^1 2e^x dx$.

OR

(a) From the following table, find P when $t = 142^{\circ}C$ and $175^{\circ}C$, using appropriate **Q.4** 07 Newton's interpolation formula.

Temp. $t^0 C$	140	150	160	170	180
Pressure P	3685	4854	6302	8076	10225

- (b) Derive an iterative formula to find \sqrt{N} and hence find approximate value of 07 $\sqrt{65}$ and $\sqrt{3}$, correct up to three decimal places.
- Q.5 (a) Find numerically smallest Eigen value of the given matrix using power method, 07 correct up to three decimal places.

[-15	4	3]
10	-12	6
20	-4	2

(b) Apply improved Euler method to solve the initial value problem y' = x + y07 with y(0) = 0 choosing h = 0.2 and compute y_1, y_2, y_3, y_4, y_5 . Compare your results with the exact solutions.

OR

(a) y(12) by Lagrange Interpolation formula from following values. Q.5

x	11	13	14	18	20	23
у	25	47	68	82	102	124

(**b**) Prove the following

(i) $\Delta = E - 1$	02
(ii) $\nabla = 1 - E^{-1}$	02

(iii) $hD = log (1 + \Delta)$ 03

07

07

04

07