G AT	T 1 . N
Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV • EXAMINATION - WINTER • 2014

	•	Code: 140102 Date: 31-12-2014	
Tiı	•	t Name: Aerodynamics I 02:30 pm - 05:00 pm Total Marks: 70 ons:	
	1. 2.	Attempt all questions.	
Q.1	(a) (b)	With a neat sketch derive the Navier – Stokes momentum equation in Cartesian coordinates. Write a short note on vortex flow with neat sketch.	07
Q.2	(a) (b)	Prove that scalar function velocity potential exist only for potential flow. Derive Bernoullie's equation.	07 07
	(b)	OR Explain the terms bound vortex, trailing vortex and explain why Prandtl's single horse theory failed.	07
Q.3	(a) (b)	What is Normal shock wave? Explain with neat sketch. How the shock waves are generated into the flow field? Difference between Normal shock and Oblique shock.	07 07
Q.3	(a) (b)	OR State the assumptions for Kutta theorem and prove Kutta-Joukowsky lift theorem. Draw and explain the C_L vs α (alpha) curve for symmetrical and unsymmetrical airfoil.	07
Q.4	(a) (b)	Derive algebraic form of fundamental lift equation using potential flow theory and show that lift is directly proportional to circulation. Prove that shock is irreversible in nature.	07
Q.4	(a) (b)	OR Derive Rankine Hugoniot Relations and prove that density down steam the shock is 6 times the upstream density. Explain with the help of diagram shockwave interaction and reflection.	07
Q.5	(a) (b)	Explain airspeed measurement in supersonic aircraft. Derive equation for airspeed in supersonic flow. Derive the Energy equation.	07
Q.5	(a) (b)	OR Explain flow over a cylinder for subsonic flow with neat sketch. Explain basic elementary flow in terms of stream function and potential function.	07 07
