Seat No.:	Enrolment No.

Subject Code: 142501

GUJARAT TECHNOLOGICAL UNIVERSITY

Date: 22-12-2014

BE - SEMESTER-IV • EXAMINATION - WINTER • 2014

Su	bject	Name: Heat Power Engineering	
Ti	me: 0	2:30 pm - 05:00 pm Total Marks: 70	
Ins	tructio		
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	State the second law of thermodynamics as per (i) Kelvin-Plank and (ii) Clausis, and prove that both statements are equivalent although they appear to be different.	07
	(b)	 (1) Define thermodynamic system. Differentiate between open system, closed System and isolated system. 	04
		(2) Differentiate homogeneous and heterogeneous system.	03
Q.2	(a)	Draw the P-V and T-S Diagram of Otto cycle and find the air standard efficiency of the Otto cycle.	07
	(b)	In an ideal Diesel cycle the temperature at the beginning and end of compression are 57° C and 603° C respectively. The temperatures at beginning and end of expansion are 1950° C and 870° C respectively. Determine the ideal efficiency of cycle. If pressure at the beginning of compression is 1 bar. Calculate the maximum pressure in the cycle. OR	07
	(b)	Initial volume of 0.18 kg of certain gas was 0.15m^3 at a temperature 15° C and pressure 1 bar. After adiabatic compression to 0.056 m³, the pressure was found to be 4 bar. Find (1) Gas constant (2) molecular mass (3) Υ (4) C _p and C _v (5) change in internal energy.	07
Q.3	(a)	What are the different forms of steam nozzle? Explain why nozzles are made Convergent-divergent?	07 07
	(b)	Explain in detail the super saturation phenomena in steam nozzle. OR	U/
Q.3	(a)	Differentiate Impulse and Reaction Turbine.	04
	()	Discus the advantages of Steam Turbine over Steam Engine.	03
	(b)	What are the different methods of compounding of steam turbine stages? List the advantages and limitation of velocity compounding.	07
Q.4	(a)	Classify the Gas Turbines.	07
	(b)	Explain with neat sketch construction and working of reciprocating air compressor.	07
		OR	
Q.4	(a)	What are the different modes of heat transfer? Explain following laws of heat transfer: (i)Newton's law (ii)Fourier's law (iii)Stefan Boltzmann's law	07
	(b)	What is entropy? What do you mean by clausius inequality?	07
Q.5	(a) (b)	Write a short note on Logarithmic mean temperature difference (LMTD). Explain vapor compression refrigeration cycle with neat sketch.	07 07
) <i>E</i>	(5)	OR Explain the following terms:	07
Q.5	(a)	Explain the following terms: (1) Refrigerant (2) Unit of Refrigeration (3) Split Air Conditioner (4) COP	07
	(b)	Explain Concept of black hody And application heat transfer in heat exchanger	07