GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V • EXAMINATION – WINTER • 2014

BE - SEMESTER-V • EXAMINATION – WINTER • 2014			
Subject Code: 150101Date: 26-11-2014Subject Name: Flight MechanicsTotal Marks: 70Time: 10.30 am - 01.00 pmTotal Marks: 70			
 Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 			
Q.1	(a) (b)	Derive equations of motion for an airplane in translational motion. Derive formula for Thrust required for level, unaccelerated flight. Also derive condition for minimum thrust required.	07 07
Q.2	(a)	 Derive lift coefficient from pressure coefficient, also sketch the pressure coefficient on the upper and lower surface across the chord . Write a short note on critical Mach Number and Critical pressure coefficient 	07
	(b)	Discuss wave drag at supersonic speeds in detail with all the relevant sketches. OR	07
	(b)	Write a short note on: 1. Swept back wings 2. Induced Drag	07
Q.3	(a)	Define all the different types of altitudes and derive the relation between geopotential altitude and geometric altitudes.	07
	(b)	Calculate the standard atmosphere values of temperature, pressure and density at a geopotential altitude of 14 km. Given: Temperature at 11 km = 216.66 K OR	07
Q.3	(a) (b)	Discuss in detail High-lift devices An airplane is flying at 80 m/sec. The pressure coefficient and flow velocity at point 1 are -1.5 and 110 m/sec, respectively. The pressure coefficient and flow velocity at point 2 is point -0.8. Calculate the velocity at point 2 if the flow is incompressible.	07 07
Q.4	(a) (b)	Explain V-n diagram in detail. An aircraft having mass 5000 kg is in steady level flight under minimum power requirement condition at altitude of 800 m. Wing span is 9.2 m. Wing area is 16.55 m ² .e=0.81 & $C_{d,o}$ =0.02. Find velocity and thrust required. Take density = 1.1337 kg/m ³ .	07 07
Q.4	(a) (b)	OR Explain Landing performance for an airplane. An aircraft having mass 7000 kg is flying at sea level with constant velocity.Wing span is 9.2 m.Wing area is 42 m ² , Aspect Ratio is 6.5,e=0.81 & $C_{d,o}$ =0.025. Thrust available is 9000 N.	07 07
		 (i) If velocity is 75 m/s. Calculate Rate of climb and climb angle. (ii) If same aircraft is flying at altitude of 7km with velocity of 105 m/s, Calculate Rate of climb and climb angle. Take density= 0.59 kg/m³. 	
Q.5	(a)	Write a short note on Longitudinal static stability. Also discuss necessary criteria for longitudinal balance and static stability.	07

(b) If maximum (L/D) of an aircraft having mass 7000 kg is 16. Calculate minimum angle of glide. Also calculate what velocity will the aircraft have at altitude of 3000 m &1000 m. Wing area is 42 m². If the engine fails at altitude of 5000 m and the next available landing site is 39 km far away on the ground, will the a/c be able to land safely? Density_{1000m}=1.1117 kg/m³ & Density_{3000m}=0.909 kg/m³.

OR

Q.5(a) Write a short note on Directional static stability.07(b) Derive Breguet range formula for propeller driven airplane.07
