	Sea	t No.: Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY	
		BE - SEMESTER-V • EXAMINATION - WINTER • 2014	
	Su	bject Code: 150404 Date: 01-12-2014	
	Su	bject Name: Principles of Process Engineering - II	
-			
	Inst	tructions:	
		1. Attempt all questions.	
		2. Make suitable assumptions wherever necessary.3. Figures to the right indicate full marks.	
		5. Figures to the right mateute run marks.	
Q.1	(a) (b)	Differentiate between direct and indirect mass transfer operations with examples. State Fick's first law of diffusion and explain N_A and J_A . Also, prove that for unidirectional binary diffusion $J_A = -J_B$.	07 07
Q.2	(a)	State different theories explaining the meaning of mass transfer coefficients. Explain any one in detail.	07
	(b)	Explain concept of equilibrium for interphase mass transfer. OR	07
	(b)	Oxygen is diffusing through non-diffusing mixture of methane and hydrogen in volume ratio of 2:1. The total pressure is $1 \times 10^5 \text{ N/m}^2$ and the temperature is 0°C . The partial pressure of oxygen at two planes 2 mm apart is respectively 13000 and 6500 N/m ² . The diffusivities are as	07
		$D_{Oxygen-Hydrogen} = 6.99 \times 10^{-5} \text{ m}^2/\text{s}$	
		$D_{Oxygen-Methane} = 1.86 \times 10^{-5} \text{ m}^2/\text{s}$	
		Calculate the rate of diffusion of oxygen.	
Q.3	(a) (b)	Explain the selection criteria for choice of solvent for absorption. Define and explain the terms: Tray efficiency, Murphree efficiency, HETP, HTU and NTU.	07 07
Q.3	(a)	OR Write a short note on minimum liquid gas ratio for absorbers.	07
Q.J	(b)	Explain Adsorption factor 'A' for gas adsorption in detail.	07
Q.4	(a) (b)	Write a short note on "preparation of solids for leaching". Explain the selection criteria for choice of solvent for liquid extraction. OR	07 07
Q.4	(a) (b)	Explain with a sketch the material balance for single stage liquid-liquid extraction. Write a short note on absorption with chemical reaction.	07 07
Q.5	(a)	What is leaching? What are the industrial applications of leaching? Discuss the different types of equilibrium diagram for leaching.	07
	(b)	Define liquid extraction giving typical examples. Explain equilateral triangular coordinates and the mixture rule.	07
Q.5	(a) (b)	Write a short note on Bollman Extractor. Explain counter current multiple contact, Shanks system for leaching.	07 07
