GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V • EXAMINATION – WINTER • 2014

Subject Code: 151003

Date: 28-11-2014

Subject Name: Integrated Circuits and Applications

Time: 10.30 am - 01.00 pm

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- 4. Parameters of 741(op-amp) IC are: A (open loop gain) = 2×10^5 , $R_i = 2 M\Omega$, $R_o = 75 \Omega$, $f_o \approx 5$ Hz, Supply voltages = ± 15 V, output voltage swing = ± 13 V.
- **Q.1** (a) Design a Biquad band-pass filter circuit with a center frequency (ω_0) at 1000 **07** rad/s, a bandwidth of 200 rad/s, and maximum gain of 1. Use magnitude scaling factor (k_m) of 10,000 to get practical values for the components.
 - (b) Draw Sallen and Key low-pass filter circuit and obtain its transfer function. 07
- Q.2 (a) Determine the output voltage in each of the following case for the open-loop 07 differential amplifier constructed using 741 with V_{in1} applied at non-inverting terminal and V_{in2} at inverting terminal.
 - a. $V_{in1} = 5 \ \mu V \ dc, \ V_{in2} = -7 \ \mu V \ dc$
 - b. $V_{in1} = 10 \text{ mV rms}$, $V_{in2} = 20 \text{ mV rms}$
 - (b) What are the drawbacks of single op-amp based differential amplifier? Draw two op-amp based differential amplifier circuit and obtain expression for its differential gain.

OR

- (b) An inverting amplifier is nulled when supply voltage is ± 10 V. Assume that negative supply voltage remains constant and positive supply voltage varies between +8 to +12 V. SVRR of op-amp IC is 96 dB. Gain of inverting amplifier is -100 when nulled. Assume feedback resistance (R_F) to be 100 k Ω . Determine (a) the change in the output offset voltage caused by the change in the supply voltage mentioned above, and (b) the total output voltage if V_{in} = 10 mV.
- Q.3 (a) What are the different factors which contribute to output offset voltage in opamp? Explain in detail the approach used to compensate one of these factors.
 - (b) Sketch op-amp based basic integrator circuit. Derive expression for output 07 voltage to justify its operation of integration. What are the problems associated with this circuit? Suggest possible solution.

OR

- Q.3 (a) Draw op-amp based peaking amplifier circuit along with its frequency response. 07 Explain its working. Write expressions for the frequency at which gain peaks as well as maximum (peak) gain.
 - (b) Sketch op-amp based basic differentiator circuit. Derive expression for output voltage to justify its operation of differentiation. What are the problems associated with this circuit? Suggest possible solution.
- Q.4 (a) Discuss op-amp based triangular wave generator circuit. Obtain expression for 07 frequency of oscillation for the same.
 - (b) Describe operation of op-amp based peak detector circuit with essential 07 diagrams.

OR

Q.4 (a) What are the different important parameters of comparator circuit? Describe 07 operation of op-amp based voltage limiter circuit with suitable diagrams.

- (b) What do you understand by precision rectifier circuit? Illustrate op-amp based 07 full-wave rectifier circuit with its complete functionality.
- Q.5 (a) Describe application of 555 timer as an astable multivibrator circuit. Obtain 07 expressions for frequency of operation and duty cycle.
 - (b) List the different types of voltage regulators. Describe the operation of basic 07 switching regulator.

OR

- Q.5 (a) Draw block diagram of basic PLL and explain operation of each of the blocks. 07
 - (b) Enumerate characteristics of ideal op-amp, and describe following parameters of op-amp: 1. CMRR, 2. SVRR, 3. Slew rate, and 4. Output voltage swing.
