	Sea	at No.: Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY	
		BE - SEMESTER-V • EXAMINATION – WINTER • 2014	
		bject Code: 153502 Date: 28-11-2014	
		bject Name: Basics of Mass Transfer	
		me: 10:30 pm to 01:00 pm Total Marks: 70	
	Ins	tructions: 1. Attempt all questions.	
		 Attempt an questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a)	State dimensions and SI units of enthalpy, pressure, molar flux. Convert 1 atm., 1 cal/hr, and 1 gm/cm ³ to corresponding SI units.	07
	(b)	Define the following terms: (1) Relative volatility (2) critical moisture content (3) nucleation (4) wet-bulb temperature (5) vapor pressure (6) absolute humidity (7) partial pressure	07
Q.2	(a)	Starting from Fick's law of diffusion, derive an integrated equation to compute the	07
	(b)	molar flux of gas A diffusing through non-diffusing gas B. A and B are ideal gases. Draw the neat sketch of agitated vessel for gas absorption and write its construction and functioning.	07
		OR	
	(b)	Write in brief construction and working of drum dryer.	07
Q.3	(a)	Write principle of membrane separation. Explain in brief electro dialysis with neat sketch.	07
	(b)	With neat sketch explain construction and working of vacuum crystallizer. OR	07
Q.3	(a) (b)	Describe with a schematic diagram Induced draft cooling tower. Give importance of drying operation. Describe with diagram drying curve.	07 07
Q.4	(a)	Derive a relation between individual and overall mass transfer coefficients according to two film theory.	07
	(b)	Draw a neat schematic diagram of backward feed triple effect evaporator? OR	07
Q.4	(a)	Define leaching and give at least two industrial applications of the process. Describe the effect of various factors on the rate of leaching. Explain the terms overflow and underflow.	07
	(b)	Derive Rayleigh equation for batch distillation.	07
Q.5	(a)	Calculate the equilibrium compositions of the liquid and the vapor phases for a mixture of methanol and water at a temperature of 323 K and under a pressure of 40 kPa. Vapor pressure of methanol and water at 323 K is 53.32 kPa and 12.33 kPa respectively.	07
	(b)	In Oxygen – nitrogen gas mixture at 101.325 kPa and 25°C, the concentrations of oxygen at two phases 2 mm apart are 10% and 20% by volume respectively. Calculate the flux of diffusion of oxygen for the cases of equimolar counter diffusion of the two gases. Diffusivity of oxygen in nitrogen is $1.18*10^{-5}$ m ² /s. $R = 8.314$ m ³ kpa/kmol K. OR	07
Q.5	(a)	A wet solid is to be dried from 35% to 10% moisture under the constant drying conditions in five hours. If the equilibrium moisture content is 4% and the critical moisture content is 14 %, how long it takes to dry solids to 6% moisture under the same conditions?	07

(b) Calculate the rate of diffusion of acetic acid (A) across a film of non-diffusing water (B) 07 1mm thick at 290 K if the concentrations of acetic acid on the opposite sides of the film