GUJARAT TECHNOLOGICAL UNIVERSITY **BE - SEMESTER-VI • EXAMINATION - WINTER • 2014**

Subject Code: 160405 Subject Name: Principles of Process Engineering-III Time:02:30 pm - 05:00 pm **Total Marks: 70 Instructions:** 1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Differentiate between dry-bulb temperature, wet bulb temperature and dew **Q.1** 07 (a) point. Also derive the relation for wet-bulb depression using concepts of film theory and wet-bulb temperature.
 - An air water vapour mixture has a dry bulb temperature of 55° C & Dew point **(b)** 07 temp. of 40° C at 1 atm total pressure. Using psychometric chart, determine :
 - i) Absolute humidity
 - ii) Saturation humidity
 - iii) Wet -bulb temperature
 - iv) Percentage humidity
 - v) Relative humidity
 - vi) Humid volume

Also indicate above quantities on chart.

- With special reference to Frenundlich adsorption isotherm, explain adsorption of Q.2 **(a)** 07 solute from dilute liquid solutions in detail.
 - **(b)** Write a short note on :
 - i) Adsorption hysteresis
 - ii) Heat of adsorption
 - ii) Adsorption from concentrated liquid solutions

OR

- **(b)** Explain single-stage adsorption operation with the help of neat diagram and 07 graphs. Also, apply Frenundlich equation to the same.
- A feed solution contains 100 moles of Benzene- Toluene mixture having 70 mol % Q.3 **(a)** 07 benzene. One third of feed is vaporized. The total pressure is 1 atmosphere. Calculate the distillate and bottom composition by using flash distillation. Average relative volatility of solution mixture is 2.5.
 - Explain positive deviations from ideality and minimum boiling mixture **(b)** 07 azeotropes.

OR

A Continuous column, having rectifying section and stripping section is designed Q.3 12 **(a)** to separate 50 mol % n-heptane with the distillate product containing 98 mol % heptanes and the water product containing 98 mol % n-octane. The feed is at its boiling point and tower operates at 1 atmosphere pressure. Calculate minimum reflux ratio, minimum number of theoretical plates, If a reflux ratio is 1.5 times minimum reflux is to be used, How many theoretical plates will be required. Equilibrium data are as follows:

Х	0.10	0.30	0.50	0.70	0.90
у	0.195	0.585	0.690	0.840	0.950

x and y are mole fractions of n-heptane.

Explain significance of Reflux ratio. **(b)**

Date: 03/12/2014

07

(a)	Explain Swenson walker crystallizer with neat sketch.	
(b)	Derive the equation for q-line. Also, draw the feed line on equilibrium diagram	
	for various values of q.	
	OR	
(a)	Explain Azeotropic Distillation with neat diagram.	07
(b)	Explain Hysteresis curve in drying operation.	07
	Explain construction, working, advantages & disadvantages of spray drier.	14
	OR	
(a)	Explain concept of freeze drying and its applications in biotechnology.	07
(b)	Explain rate of drying curve for both constant rate period and falling rate period.	07
	 (a) (b) (a) (b) 	 (a) Explain Swenson walker crystallizer with neat sketch. (b) Derive the equation for q-line. Also, draw the feed line on equilibrium diagram for various values of q. OR (a) Explain Azeotropic Distillation with neat diagram. (b) Explain Hysteresis curve in drying operation. Explain construction, working, advantages & disadvantages of spray drier. OR (a) Explain concept of freeze drying and its applications in biotechnology. (b) Explain rate of drying curve for both constant rate period and falling rate period.
