Seat No.: ____

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI • EXAMINATION - WINTER • 2014

Subject Code: 160505

Date: 03-12-2014

Subject Name: Computer Aided Process Synthesis

Time: 02:30 pm - 05:00 pm

Total Marks: 70

Instructions:

(b)

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Discuss in brief environmental issues and various safety considerations in Q.1 07 (a) product and process design.
 - Write a short note on geometric concepts for reactor attainable region. **(b)** 07
- Q.2 What is pinch point? Explain its importance in heat exchanger network synthesis 07 (a) giving step wise procedure to design heat exchanger network using pinch design approach.
 - Discuss in brief about design opportunities and general steps in product and **(b)** 07 process design.

OR

- Explain the terms minimum approach temperature, optimum approach **(b)** 07 temperature and threshold approach temperature for heat exchanger networks.
- For the heat exchanger synthesis problem, following stream information is Q.3 **(a)** 07 C. I ___ available:

Stream	$T_{in'} K$	T_{out} , K	$FC_p, kW/K$
H ₁	430	340	15
C ₁	310	395	7
C_2	370	460	32

Find out minimum utility targets and pinch point for $\Delta T_{min} = 20$ K using temperature interval method.

(b) Prepare transshipment model for the above data and prepare LP formulation. 07

OR

- Discuss in detail for phase separation of reactor effluent. **Q.3** 07 **(a)** Explain marginal vapor flows and show how it is useful for predicting the best 07 **(b)**
- sequence of distillation columns. **Q.4 (a)** Explain the concepts of heat Engine and heat pump. Discuss scope of heat and 07 power integration in chemical process plant using it.
 - Discuss heuristics for selection of a separation method. 07

OR

- Discuss design of single product processing sequences. 07 **Q.4** (a) 07
 - Write importance of CAPS in chemical engineering. **(b)**
- Explain the cycle time and transfer policies (zero wait, unlimited intermediate 07 Q.5 **(a)** storage and no intermediate storage). With example show how transfer policy affects the cycle time.

(b) Given the processing times for two products A and B, determine make span and cycle time for manufacturing one batch of A and one batch of B using (i) Zero wait policy (ii) No intermediate storage policy and (iii) Unlimited intermediate storage policy.

		Processing time (hr)				
		Stage 1	Stage 2	Stage 3		
	А	6	4	3		
	В	3	2	2		
		OR				

- Q.5 (a) Explain the concept of multi effect distillation as possibility of energy 07 integration.
 - (b) With a neat sketch explain vapour recompression and reboiler flashing. 07
