
## **GUJARAT TECHNOLOGICAL UNIVERSITY** BE - SEMESTER-VII • EXAMINATION – WINTER • 2014

| Subject Code: 172401 Date: 25-11-<br>Subject Name: Power Electronics Systems Modeling |                                                            | 014                                                                                                                                                                                                                                   |          |
|---------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Ti                                                                                    | Time: 10:30 am - 01:00 pm Total Marks: 70<br>Instructions: |                                                                                                                                                                                                                                       | )        |
| 1115                                                                                  |                                                            | Attempt all questions.<br>Make suitable assumptions wherever necessary.                                                                                                                                                               |          |
| Q.1                                                                                   | (a)<br>(b)                                                 | Discuss the concept of nonlinearity and the importance of perturbation & linearization with respect to power electronics giving an example. Discuss different types of modeling methods with their merit and demerits.                | 07<br>07 |
| Q.2                                                                                   | (a)                                                        | Derive the expression of duty cycle for boost converter with the help of capacitor                                                                                                                                                    | 07       |
|                                                                                       | (b)                                                        | charge second principle.<br>Develop the model of Armature controlled DC servo motor.<br><b>OR</b>                                                                                                                                     | 07       |
|                                                                                       | <b>(b</b> )                                                | Explain DC transformer model with necessary equations and figures.                                                                                                                                                                    | 07       |
| Q.3                                                                                   | <b>(a)</b>                                                 | Explain the modeling the boost converter inclusion inductor copper loss. Draw the waveform for inductor voltage and capacitor current waveforms.                                                                                      | 07       |
|                                                                                       | <b>(b</b> )                                                | Derive small signal linearized equation that describes change in inductor current.<br>OR                                                                                                                                              | 07       |
| Q.3                                                                                   | (a)                                                        | Explain the modeling of boost converter inclusion of semiconductor conduction                                                                                                                                                         | 07       |
|                                                                                       | <b>(b</b> )                                                | losses. Draw the waveform for inductor voltage and capacitor current.<br>Show that during transient period net change in inductor current over one<br>switching period can be correctly predicted by use of average inductor voltage. | 07       |
| Q.4                                                                                   | (a)                                                        | Find out the steady state output voltage for a boost chopper using small-ripple approximation. Draw necessary diagrams & waveforms. Also derive the equation for voltage conversion ratio M (D) and draw its graph.                   | 07       |
|                                                                                       | <b>(b)</b>                                                 | What is a Transfer Matrix & how it is obtained from state-space equations?<br>OR                                                                                                                                                      | 07       |
| Q.4                                                                                   | (a)                                                        | Find out the steady state output voltage for a buck chopper using small-ripple approximation. Draw necessary diagrams & waveforms. Also derive the equation for voltage conversion ratio M (D) and draw its graph.                    | 07       |
|                                                                                       | <b>(b</b> )                                                | How the review of bode plot is useful in analysis of converters?                                                                                                                                                                      | 07       |
| Q.5                                                                                   | <b>(a)</b>                                                 | What is feedback control? Explain the closed loop of controlled rectifier with necessary circuit diagram and waveform.                                                                                                                | 07       |
|                                                                                       | <b>(b)</b>                                                 | Find the state-space model of the second-order differential equation.<br>$\ddot{x} + a\dot{x} + bx = f(t).$                                                                                                                           | 07       |
|                                                                                       |                                                            | OR                                                                                                                                                                                                                                    |          |
| Q.5                                                                                   | (a)                                                        | What is linearization? Explain linearized circuit for an up/down converter in discontinuous conduction using necessary circuit, equation and waveform.                                                                                | 07       |

1

(b) Derive state space for the following circuit diagram.

