Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VIII • EXAMINATION - WINTER • 2014

Subject Code: 180503 Subject Name: Process Simulation and Optimization Time: 02:30 pm - 05:00 pm Instructions: Date: 02-12 Total Mar		Code: 180503 Date: 02-12-201	Date: 02-12-2014	
		xs: 70		
	1.	Attempt all questions. Make suitable assumptions wherever necessary.		
Q.1	(a)	Define simulation, partitioning, tearing, optimization and explain the need of optimization.	07	
	(b)	Find the value of x and z that maximize $U = -x^2 + 10x + xz - z^2 + 8z + 2$.	07	
Q.2	(a) (b)	List the structural components of general purpose sequential modular program. Describe the six steps used to solve optimization problem. OR	07 07	
	(b)	Describe the obstacles to optimization.	07	
Q.3	(a)	Define Hessian matrix for function of two variables and find the Hessian matrix for $f(x) = 2x_1^2 + 3x_1x_2 - 2x_2 + 15$.	07	
	(b)	Define convexity and explain the evaluation of nature of convexity for multivariable function.	07	
Q.3	(a)	OR Construct the region formed by the following constraints and determine the convexity: $x_1 \le 6$; $x_2 \le 6$; $x_1 \ge 0$; $x_1 + x_2 \le 6$; $x_2 \ge 0$.	07	
	(b)	Mention the conditions to be satisfied for extremum of function of single variable and find extremum for $f(x) = x^4$.	07	
Q.4	(a) (b)	Minimize $f(x) = x^4 - x + 1$ using Newton's method. Take starting point = 0.64 Classify the optimization methods.	07 07	
Q.4	(a)	OR Minimize $f(x) = 4x_1^2 + 5x_2^2$ subject to $2x_1 + 3x_2 - 6 = 0$ using Lagrange	07	
Q. 4	(a)	Multipliers method.	U/	
	(b)	Draw the flow chart for implementing Fibonacci method.	07	
Q.5	(a)	Maximize Z= $3x_1 + 5x_2$ subject to $x_1 \le 4$; $2x_2 \le 12$; $3x_1 + 2x_2 \le 18$; $x_1, x_2 \ge 0$ using Simplex method.	07	
	(b)	Discuss the optimization of pipe diameter.	07	
Q.5	(a)	OR Explain the equality constraints involved in optimal design and operation of a	07	
V.	(a)	conventional staged-distillation column.	07	
	(b)	Discuss the features of basic tearing algorithm.	07	
