GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III • EXAMINATION – WINTER • 2014

U			:30/12/ 2014	
	-	Name: Fundamentals of Digital Design 2.30 pm - 05.00 pm Total Marks: '	70	
	truction	<u>.</u>	·	
Q.1	(a) (b)	Explain half and full adders in detail. Implement the functions $F=\sum(0,3,4,6,8,10,12,14)$ with don't care conditions $d=\sum(1,2,9,11)$ Discuss the effect of don't care conditions.	07 07	
Q.2	(a) (b)	Convert the following numbers as directed: $ 1. (13.23)_{10} = (\)_2 $ $ 2. (10110.11)_2 = (\)_{10} $ $ 3. (110111011101.111011)_2 = (\)_8 $ What is Multiplexer? With logic circuit and function table explain the working	07 07	
		of 4 to 1 line multiplexer. OR		
	(b)	Simplify the Boolean Function by using the tabulation method: $F = \Sigma(0,1,2,8,10,11,14,15)$	07	
Q.3	(a)	Simplify the following Boolean functions to a minimum numbers of literals. (a) xyz+x'y+xyz' and (b)(A+B)'(A'+B')'	07	
	(b)	Perform the subtraction with the following decimal numbers using 1's compliment and 2's compliments. (a) 1100-1101, (b) 1010-1000 OR	07	
Q.3	(a) (b)	Show that the dual of the exclusive-OR is equal to its compliment. Obtain the simplified expression for the following Boolean functions using K-MAP method. 1. $F(A,B,C,D) = \sum (0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)$ 2. $F(A,B,C,D) = \sum (11,12,13,14,15)$.	07 07	
Q.4	(a) (b)	Design Sequential Circuit with J.K. Flip Flops to satisfy the following state equation. 1. $A(t+1) = A'B'CD + A'B'C + ACD + AC'D'$ 2. $B(t+1) = A'C + CD' + A'BC'$ 3. $C(t+1) = B$ 4. $D(t+1) = D'$ Design and implement BCD to GRAY code converter.	07	
0.4	(-)	OR Fundain 4 bit Magnituda Communitari	07	
Q.4	(a) (b)	Explain 4 bit Magnitude Comparator. Give the difference between Combinational and sequential circuits and also explain state diagram machine.	07 07	
Q.5	(a) (b)	What is the full form of FPGA? Explain the basic block diagram of FPGA. Explain Master slave flip-flop in detail.	07 07	
Q.5	(a)	OR Explain D type positive edge triggered flip flop.	07	
V.	(b)	What is encoder? Explain the working of Octal to binary Encoder.	07	
