GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III • EXAMINATION – WINTER • 2014

Subject Code: 2130504

Date: 30-12-2014

Subject Name: Process Calculation

Time: 02.30 pm - 05.00 pm

Total Marks: 70

- Instructions:
 - 1. Attempt all questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
 - 4. Atomic weights: C:12, H:1,O:16, S:32, Cl:35.5, Na:23,N:14,Mg:24,B:11,Si:28,Al:27,Fe:56,Zn:65
- Q.1 (a) (i) The diameter and hieght of a vertical cylindrical tank are 5 ft and 6ft respectively. It is full up to 65% hieght with carbon tetrachloride (CCl₄), the density of which is 1.6 kg/L. Find the mass in Kilograms.
 (ii) Convert: (a) 2.1gm/cm³ to lb/ft³ (b) 550 kPa to Torr (c) 700°R to °F 03
 - (b) A gas mixture has the following composition by volume: SO₂-8.5%,O₂-10 % 07 and rest is nitrogen.Find (1) the avg. Molar mass of the gas mixture, (2) the composition by mass, and (3) the density of the mixture in kg/m³ at 473 K and 202.65 kPa gauge.
- Q.2 (a) An aqueous soution of acetic acid of 35% concentration (by mass) has a density 07 of 1.04 kg/L at 25°C. Find the molarity, Normality and Molality of the solution.
 - (b) The analysis of a sample of glass yields 7.8% Na₂O, 7.0% MgO, 9.7% ZnO, 07 2.0% Al₂O₃, 8.5% B₂O₃ and 65.0% SiO₂ (by mass). Convert this composition into mole%.

OR

- (b) A waste acid from nitrating process contains 20% HNO₃, 40% H₂SO₄, and 40% 07 water by weight. This acid is concentrated to contain 40% HNO₃, 50 % H₂SO₄ by the addition of concentrated H₂SO₄ containing 99% H₂SO₄ and concentrated Nitric acid containing 95% HNO₃. Calculate the weight of waste and concentrated acid that must be obtaining 1000 kg of desired mixture.
- Q.3 (a) An aqueous solution of pyridine containg 27% (by wt.) pyridine and 73% (by wt.) water is to be extracted with chloro-Benzene. The feed and solvent are mixed well in batch extractor and the mixture is then allowed to stand for phase separation. The exract phase conains 11% pyridine, 88.1% chlorobenzene and 0.9% water b weight. The raffinate phase contains 5% pyridine and 95% water by weight. Calculate: (1) The quantities of two phases (2) The weight ratio of solvent to feed based on 100 kg of feed.
 - (b) The feed to acontinous fractionating column analysed by weight 28% benzene and 72% toluene. The analysis of the distilate shows 52% (by weight) benzene and 5% (by weight) benzene was found in the bottom product.Calculate the amount of distillate and bottomproduct per 1000 kg of feed per hour. Aslo calculate the percent recovery of benzene.

OR

- Q.3 (a) 2000 kg of wet solids containing 70% solids by weight are fed to tray dyer 07 where it is dried by hot air. The product finally obtained is found to contain 1% moisture by weight, calculate: (1) kg of water removed from wet solids (2) kg of the product obtained.
 - (b) Discuss about recycling and By passing operations.

07

1

- Q.4 (a) In the Decon process for the manufacture of chlorine, a dry mixture of 07 hydrochloric acid gas and air is passes over a heated catalyst which promotes oxidation of acid. Air is used in 30% excess of htat theoritically require. Calculate the weight of air supplied per kilogram of acid.
 - (b) A solution of ferric chloride in water contains 64% FeCl₃ by weight. Calculate 07 the amount of FeCl₃.6H₂O which will crystallise at 300 K from 1000 kg of feed solution. The solubility of FeCl₃ at 300 K is 68.3% by weight FeCl₃.

OR

- Q.4 (a) Gaseous benzene reacts with hydrogen in presence of Ni catalyst as: C_6H_6 (g) +3H₂ (g) ------ C_6H_{12} (g). 30% excess hydrogen is used above that required by above reaction. Conversion is 50% and yield is 90%. Calculate the requirement of benzene and hydrogen gas for 100 moles of cyclohexane.
 - (b) Define: (1) Heat of reaction (2) Heat of combustion (3) Std. heat of formation 06 (4) Heat capcity.
- Q.5

(a) Flue gas leaving the boiler stack at 523 K has following composition on mole **08** basis CO₂- 11.31%, H₂O-13.04%, O₂-2.17% and N₂-73.48%. Calculate the heat lost in 1 kmol of gas mixture above 298 K using heat capacity data given below $C_p = a+bT+cT^2+dT^3$ in kJ/kmol K.

Gas	а	b*10 ³	c*10 ⁶	d*10 ⁹
CO ₂	21.3655	64.2841	-41.0506	9.7999
H ₂ O	32.4921	0.0796	13.2107	-4.5474
N_2	29.5909	-5.141	13.1829	-4.968
O_2	26.0257	11.7551	-2.3426	-0.5623

(b) (i) Calculate the heat of formation of glycerol liquid ($C_3H_8O_3$) at 298 K from its elements using Hess's law. Data: Heat of foramtion of $CO_2_{(g)} = (-393.51 \text{ kJ/mol})$, Heat of formation of $H_2O_{(1)} = (-285.83 \text{ kJ/mol})$, Heat of combustion of glycerol liquid at 298 K= (-1659.10 kJ/mol).

(ii) Calcuate the standard heat of reaction of the following reaction and also 03 suggests weather reation is (Exothermic/Endothermic).

(COOH) _{2(s)} ------ HCOOH _(l) +CO_{2 (g)}. using following Data:

Component	ΔH [°] _c , kJ/mol at 298K
$(COOH)_{2(s)}$	-244.76
HCOOH _(l)	-254.64
	OR

- Q.5 (a) Discuss proximate analysis and ultimate analysis of coal.
 - (b) The orsat analysis of the flue gases by mole is as given below: CO₂-11.4%, O₂ 4.2% and N₂-84.4%. Assuming that complete combustion takes place. Calculate (1) the % excess air (2) find the C: H ratio in the fuel.

08

07