		Seat No.:		_	Е	Enrolment No ICAL UNIVERSITY ATION – WINTER • 2014 Date: 20-12-2014 Total Marks: 70 ssary.					
		Subject (BE - SI Code: 2	EMESTER-II							
		Time: 02 Instruction 1. Att 2. Ma	2.30 pm s: tempt all ake suitab	questions. le assumptions he right indicate							
Q.1	(a)	Select the mos (i)Convert	t approp	riate option. decimal	number	187	to	8-bit	binary.	07 01	
		(A) 10111011 ₂	((B)11011101 ₂	(C)	10111101 ₂	(D) 10111100 ₂			
		(ii) Convert the	e binary ı	number 1001.0010 ₂ to decimal.		imal.				01	
		(A) 90.125	5	(B) 9.125	(C) 12	5	(D) 12.5				
		(iii) If a 3-input NOR gate has eight input possibilities, how many of those possibilities will result in a HIGH output?									
		(A) 1	((B) 2	(C) 7		(D) 8				
		(iv) If a signal passing through a gate is inhibited by sending a LOW into one of the inputs, and the output is HIGH, the gate is $a(n)$:									
		(A) AND	(B) NAND	NAND (C) NOR		(Γ		01			
		(v) When used with an IC, what does the term "QUAD" indicate?									
		(A) 2 circuits		(B) 4 circuits	S	(C) 6 cire	cuits	(D) 8 circ	cuits	01	
		(vi) The 2's complement of the number 1101110 is (A) 0010001. (B) 0010001. (C) 0010010. (D) None.									
		(vii) Which TT (A) Open colle		gate is used for put (B) To	wired ANI tem Pole	C	state output	(D) E	CL gates	01	
										01	
	(b)	Minimize the following logic function using K-maps and realize using NAND and NOR gates. $F(A,B,C,D) = \sum_{m=0}^{\infty} m(1,3,5,8,9,11,15) + d(2,13)$.									
Q:2	(a)										
	(b)	Design a mod-	sign a mod-12 Synchronous up counter using D-flipflop.								
		OR									

	(b)	Design a BCD to excess 3 code converter using minimum number of NAND gates.	07							
Q:3	(a)	A combinational circuit has 3 inputs A, B, C and output F. F is true for following input combinations A is False, B is True A is False, C is True A, B, C are False A, B, C are True (i) Write the Truth table for F. Use the convention True=1 and False = 0. (ii) Write the simplified expression for F in SOP form. (iii) Write the simplified expression for F in POS form. (iv) Draw logic circuit using minimum number of 2-input NAND gates.								
	(b)	Simplify using Boolean laws and draw the logic diagram for the given expression. $F = \overline{ABC} + \overline{AB} C + \overline{A} \overline{B} C + \overline{A} \overline{B} C + \overline{A} \overline{B} C$ OR								
Q:3	(a)	Prove the following Boolean identities. (ii) $XY + YZ + \overline{Y} Z = XY + Z$ A.B. $\overline{A} . B + \overline{A} . B = \overline{A} + B$	07							
	(b)	Design a 8 to 1 multiplexer by using the four variable function given by $F(A,B,C,D) = \sum m(0,1,3,4,8,9,15).$								
		OR								
Q:4	(a)	Draw the circuit diagrams and Truth table of all the Flip flops (SR, D, T and JK).								
	(b)	Implement D flip flop using JK flip flop.	07							
		OR								
Q:4	(a)	Define the followings. (i) Propagation delay (ii) Fan in (iii) Noise Margin (iv) Negative Logic (v) Write D' Morgan's Theorems (vi) EPROM (vii) Totem Pole output	07							
	(b)	Compare the Followings in every aspect. (i) TTL and CMOS (ii) RAM and ROM	07							
Q:5	(a)	Write short note on four bit Universal Shift Register.	07							
	(b)	Discuss the General State machine Architecture.								
		OR								
Q:5	(a)	Explain the Fundamental Mode Model of Asynchronous State Machine with suitable example.	07							

Write short note on Programmable Logic Arrays.

(b)

07