GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III • EXAMINATION – WINTER • 2014

Su	bject	Code: 2131704 Date: 20-12-2014	
Tiı	•	Name: Digital Logic Circuits 2.30 pm - 05.00 pm Total Marks: 70	
	1. 2. 3.		
Q.1	(a) (b)	 Design a 3 bit combinational circuit for converting binary code to gray code Do as directed: Convert (B65F)₁₆ to decimal Find the tens complement of (52520)₁₀ Write the reflected code for 3 bits Subtract (3250-72532)₁₀ using 10s compliment 	07 01 02 02 02
Q.2	(a) (b)	 Simplify 1. A'B + A'BC' + A'BCD + A'BC'D'E 2. (P+Q+R) (P' + Q' + R') P 1. State and prove demorgan's theorem 2. Define: a) Positive and negative logic b) Propagation delay c) Fan-out OR 	07 07
	(b)	Simplify the following Boolean function using K-map 1. F=x'yz+xy'z+xyz+xyz' 2. F=A'C+A'B+AB'C+BC	07
Q.3	(a) (b)	Simplify the Boolean function using K-map in 1) Sum of product 2) product of sum (d is don't care condition) F=A'B'D'+A'CD+A'BC d= A'BC'D+ACD+AB'D' Simplify the Boolean function using the tabulation method	07 07
	(U)	$F(A,B,C,D,E,F,G) = \sum (20,28,38,39,52,60,102,103,127)$ OR	07
Q.3	(a)	What is encoder? With logic circuit and truth table explain the working of Octal to binary encoder.	07
Q.4	(b) (a) (b)	Design a combinational circuit for full adder and full subtractor Design a 3-bit binary counter using T flip-flop Write short note any two flip-flops of your choice (include circuit diagram, characteristic table, characteristic equation and symbol) OR	07 07 07
Q.4	(a) (b)	Write a note on binary ripple counter List the characteristics of digital logic families. Define any two characteristics.	07 07
Q.5	(a) (b)	Explain arithmetic, logic and shift micro operations Explain R-2R ladder type DAC	07 07
Q.5	(a) (b)	OR Explain Successive Approximation ADC Design a circuit for a 4 bit BCD adder	07 07
