Seat No.:	Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY B.PHARM.-SEMESTER-VIII- EXAMINATION –SUMMER-2017

Subject Code: 2280001 Date: 26/04/2017

Subject Name: Dosage Form Design- II

Time: 10:30 AM to 01:30 PM Total Marks: 80

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Describe bioerodible and combination of diffusion dissolution system with examples.	06
	(b)	Discuss physicochemical factors to be considered for oral controlled release system.	05
	(c)	Describe the ideal requirements for sustained release formulations. Discuss selection criteria of polymers used in novel parenteral formulations with examples.	05
Q.2	(a)	Write a note on: Matrix system, Reservior system.	06
	(b)	Write a note on various site specific drug delivery systems with examples of suitable drug candidate.	05
	(c)	Describe formulation and evaluation of liposomes.	05
Q.3	(a) (b)	Describe evaluation of transdermal drug delivery system. Enlist causes for non-linearity. Write Michaelis Menten equations for different plasma level concentration.	06 05
	(c)	Write detail note on "Ocusert".	05
Q.4	(a)	Explain with examples with reference to CDDS: porosity and tortuosity, erodible and non-erodible.	06
	(b)	Explain calculation of loading and maintenance dose with examples.	05
	(c)	Write note on formulation and evaluation of microspheres.	05
Q.5	(a)	Write definition and scope of Clinical Pharmacokinetics. Discuss dosage adjustment in renal failure patients.	06
	(b)	Write rationales for gastro-retentive drug delivery. Explain expandable approach.	05
	(c)	Derive equations for first and zero order kinetics.	05

Q. 6	(a)	Derive equations for absorption rate constant using Wagner- Nelson and Loo-Riegelman method.	06
	(b)	Describe various formulation approaches in brief for transdermal drug delivery system.	05
	(c)	Theophylline is effective in the treatment of bronchitis at blood level of $10\text{-}20\mu\text{g/ml}$, i.e., therapeutic range. Theophylline follows first order elimination kinetics. Average $t_{1/2}$ is 3.4 hour and range is 1.8 to 6.8 hour. The average volume of distribution is 30.Litre. Calculate upper and lower limits of clearance for theophylline.	05
Q.7	(a) (b)	Explain: First pass effect, Hepatic clearance, Volume of distribution. Discuss Pharmacokinetic drug interactions with examples. Explain its importance in combination therapy.	06 05
	(c)	A 70kg patient is given outain by i.v. infusion at a rate of 0.1 μ g/ml. The drug has a half-life of 22 hours and the desired steady state plasma concentration is 0.0002 μ g/ml. Assuming the drug disposition as one compartment open model. Calculate time required to reach 90 % Css and apparent volume of distribution.	05
