GUJARAT TECHNOLOGICAL UNIVERSITY

B. Pharm. - SEMESTER - I (OLD Syllabus) • EXAMINATION - SUMMER • 2015

Subject Code: 210006 Date: 08-06-2015

Subject Name: Elementary (Remedial) Mathematics

Time: 02:30 pm - 05:30 pm Total Marks: 80

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Solve the following system of equations using inverse of a matrix: $\begin{array}{ccc}
 x + & y + & z = 3 \\
 2x + & y + & z = 4 \\
 & & x + 2y + 3z = 6
 \end{array}$
 - Show that if the sum of the roots of the equation $\frac{1}{x+a} + \frac{1}{x+b} = \frac{1}{c}$ is zero then the product of the roots is $-\frac{1}{2}(a^2+b^2)$.
 - Solve by Cramer's rule x+2y=-45x+3y=1
- **Q.2** (a) Find mean and standard deviation of the following data: 06 Protein 25-35 35-45 45-55 15-25 55-65 65-75 75-85 intake/day Number of 30 40 100 110 80 30 10 families
 - (b) In a pharmaceutical factory, three machines A, B and C manufacture 30%, 45% and 25% of the total product respectively. Of these outputs machine A, B and C produce 4%, 3% and 2% respectively, are defective tablets. A tablet is picked at random and is found to be defective. What is the probability that the tablet was produced by the machine B?
 - (c) If the probability of a bad reaction from a certain injection is 0.001, determine the probability that out of 2000 individuals
 - (i) Exactly 2.
 - (ii) more than 2 individuals

will suffer a bad reaction.

- Q.3 (a) In a group of students there are 4 girls and 6 boys. In how many ways a committee of 5 members can be formed such that
 - (i) There are at least 3 girls.
 - (ii) There are at the most 3 boys in the committee.
 - (b) The third term of an arithmetic progression (A.P.) is 10 and its 10th **05** term is 31. Find the sum of first 50 terms of this A.P.
 - (c) Find the first term in the expansion of $\left(x^2 \frac{2}{x}\right)^6$.

Q.4	(a)	(i) Prove that $\sin 2A = \frac{2 \tan A}{1 + \tan^2 A}$.	03
		(ii) Show that	03
	(b)	$4\sin\frac{\pi}{6}\sin^{2}\frac{\pi}{3} + 3\cos\frac{\pi}{3}\tan\frac{\pi}{4} + \cos ec^{2}\frac{\pi}{2} = 2\sec^{2}\frac{\pi}{4}$ If $\sin A = \frac{3}{5}$, $\cos B = -\frac{12}{13}$, where A and B both lie in second	05
		quadrant, find the value of $\sin(A+B)$.	
	(c)	Prove that $\frac{\log 25 - \log 125 + \frac{1}{2} \log 625}{3 \log 5} = \frac{1}{3}$	05
Q.5	(a)	(i) Find the area of the triangle whose vertices are (4, 4), (3, -2) and (-3, 16). (ii) Show that the vertices of a (7, 9), (3, -7) and (-3, 3) form a	03 03
	(b)	right angled isosceles triangle. A point P(x, y) moves such that its distance from the fixed point (3, 2) remains 4 unit. Find the equation of its locus.	05
	(c)	Find the equation of the line passing through the points $(2, 3)$ and $(5, -2)$.	05
Q. 6	(a)	(i) Find the limit if it exists $\lim_{x \to 3} \frac{\sqrt{x^2 + 7} + \sqrt{3x - 5}}{x + 2}$	03
		(ii) Find $\frac{dy}{dx}$ for the function $y = 5^{x^5}$	03
	(b)	(i) Differentiate the following w.r.t. x $x^{3} + y^{3} + 3x^{2}y = a^{3}$	03
		(ii) Find $\frac{dy}{dx}$, if $x = at^2$, $y = 2at$	02
	(c)	Find $\frac{d^2y}{d\theta^2}$ when $\theta = 0$ given that $y = 4 \sec 2 \theta$	05
Q.7	(a)	Evaluate $\int \frac{3x-5}{x^2-x-2} dx$	06
	(b)	(i) Evaluate $\int x \log x dx$	03
		(ii) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^2 x \ dx$	02
	(c)	Solve $\frac{dy}{dx} + \frac{4x}{x^2 + 1}y = \frac{1}{(x^2 + 1)^3}$	05
