GUJARAT TECHNOLOGICAL UNIVERSITY BPHARM – SEMESTER – I • EXAMINATION – WINTER 2012

	Subje Subje	Date: 08-01-2013	
	Time	Total Marks: 80	
	1. 2.	uctions: Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Solve the following equations (i) $3x^2 + 5\sqrt{2}x - 2 = 0$	06
	(b)	(ii) $(x + 4) (x + 5) = 3 (x + 1) (x + 2) + 2x$	05
	(c)	Find the sum of first 11 terms of A.P. 2, 6, 10, 14	05
Q.2	(a)	Solve the following simultaneous equations using Cramer's rule $a + 2b + 3c = 5$; $2a - 3b - c = 3$; $-3a + 4b + 5c = 3$	es 06
	(b)	If A = $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, B = $\begin{pmatrix} 1 & 3 & 1 \\ 2 & 4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	05
		Then, Verify the $(A + B)^{T} = A^{T} + B^{T}$	
	(c)	Prove that the following	05
		$\begin{vmatrix} X^{2} & Y^{2} & Z^{2} \\ X & Y & Z \\ 1 & 1 & 1 \end{vmatrix} = -(X - Y)(Y - Z)(Z - X)$	
Q.3	(a)	Find the area of the quadrilateral with vertices $(3, 2)$, $(-3, 4)$, $(-2, -3)$ and $(2, -2)$	2, -3) 06
	(b)	Find the value of a, if the point B $(a, 0)$ is at distance 10 units fr A $(-1, 8)$, where $a > 0$.	rom 05
	(c)	Let $f(x) = \frac{2x^2 + 9x - 9}{3x^2 + 2x + 1}$	05
		Compute $\lim_{x \to \infty} f(x)$ if it exists.	

The particle size distribution of paracetamol powder yielded the following result where in 50 particles were taken for counting.

		Time (in min)	5-9	10-14	15-19	20-24	25-29	30-34	35-39	
Q.4	(a)	No. Of paticles	2	8	12	10	8	7	3	

06

05

Calculate mean and Standard deviation.

The bacteria in a culture grows by 8% in the first hour, decreases by 8% in the 05

- (b) second hour and increase by 7% in the third hour. If at the end of the third hour the count of bacteria is 12170000, find the original count of bacteria in the sample. (Antilog is 11450000)
- (c) Find the term independent of X in the following

in the expansion of
$$\left(\frac{3X^2}{5} - \frac{1}{2X}\right)^9$$

Q.5	(a)	Do as directed (i) Find the value of $\tan 22^{1^{\circ}/2}$ (ii) Evaluate $\tan \frac{13\pi}{12}$	06
	(1)	$\cos \theta + \sin \theta = \sqrt{2}$ $\cos \theta$, show that $\cos \theta - \sin \theta = \sqrt{2}$ $\sin \theta$	05
	(b) (c)	From a pack of 52 cards two are drawn at random. Find the chance that one is a knave and other an ace.	05
Q. 6	(a)	If $x^y = e^{x-y}$, prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$	06
		Let $y = (\log X)^3$	05
	(b) (c)	Differentiate (X - 2) (X - 3) w.r.t. X	05
Q.7	(a)	Solve dy / dx = Cos X CosY – SinX SinY $\int Sin^{3}X Cos^{4}X dx$	06 05
	(b) (c)	Find the value of n from the following $840 \text{ n!} = 7!$	05
