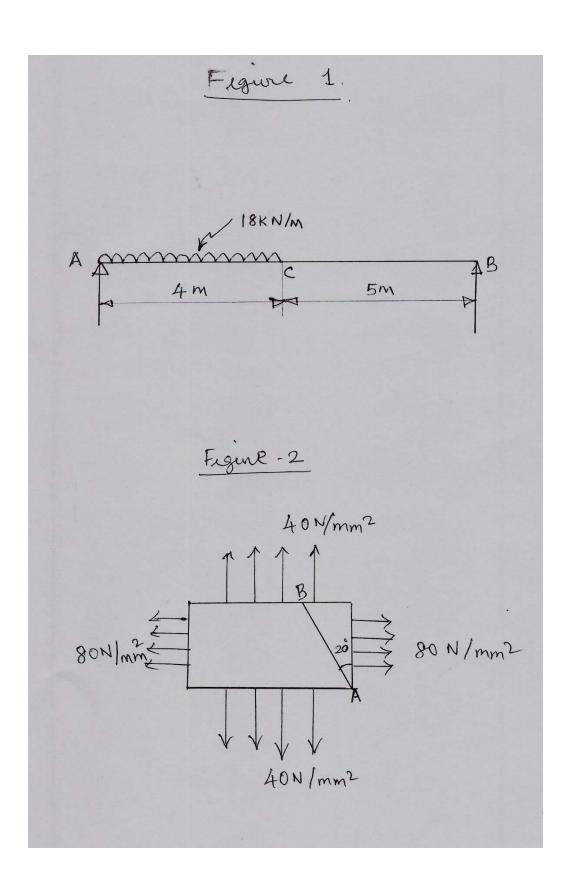
Seat N	Jo:	Ţ	Enrolment No.		
Scat I		 UJARAT TECHNOLOGICAL UN			
1		Engineering - SEMESTER-III • EXAMINAT		13	
Subject Code: 331904 Date: 04-12-2					
Subject Name: Strength of Materials Time: 10:30 am - 01:00 pm Instructions: Total Materials			Total Marks: 7	rks: 70	
	 Ma Fig 	empt all questions. ke suitable assumptions wherever necessary. ures to the right indicate full marks. glish version is considered to be Authentic.			
Q.1	(a)	(i) A steel bar 1 m long and 25mm diameter is tension of 50KN. If Young's Modulus = 2 Stress, Strain and Elongation in the bar.		05	
	(b)	 (ii) Define Modulus of Elasticity and Poisson's (i) A steel rod 20mm diameter and 6m lot two grips one at each end at a temperature temperature stress induced when the temperature if the ends do not yield and if the ends yie E=2 x 10⁵ N/mm² and α=12 x 10⁻⁶ per ° C. 	ong is connected to e of 120° C. Find the erature falls to 40° C, ld by 1.10 mm. Take	02 05	
Q.2		(ii) Differentiate between ductility and malleab	ility.	02	
-	(a)	A Copper rod 20mm in diameter is encased in internal diameter and 30mm external diametrigidly connected. The composite section is subjected to an axial pull of 25KN. If E_s = 2.15 : 1.1 x 10 ⁵ N/mm ² , calculate the Stress induced in	eter. Their ends are 400 mm long and is $\times 10^5 \text{ N/mm}^2$ and E_c =	07	
	(b)	A weight of 120N is dropped from a height of 2 is of 10mm diameter and 1500 mm ler instantaneous Stress and Strain developed in the N/mm ² .	20mm on a bar which ngth. Find out the	07	
	(b)	(i) A cylindrical shell has an internal diam thickness of its wall is 12mm. If the steam pres N/mm ² , Find the Hoop Stress and Longitudinal	ssure in the Shell is 5	05	
		(ii) Write the formula to calculate instantaneous gradually applied load and suddenly applied load		02	
Q.3	(a)	A simply supported beam is loaded as shown in the Shear Force and the Bending Moment at Shear Force and Bending Moment diagram.	•	07	
	(b)	(i) A cantilever beam of 1m span and 200 x carries a uniformly distributed load of 20KN/m Bending Stress in the section.		05	
		(ii) State the Perpendicular Axes Theorem. OR		02	
Q.3	(a)	A cantilever Beam of 1.75 m span is subjec	ted to a Uniformaly	07	


Distributed Load 75 KN / m over entire span and a Point Load of 60 KN at free end. Find slope and defflection of the beam at free end . Take EI= $12 \times 10^{13} \text{ N.mm}^2$.

(i) Draw the Shear Stress distribution diagrams for Rectangular

(b)

		section , I section and T section. (ii) Draw the Core of the Rectangular and Circular Section.	04
Q.4			
	(a)	(i) A Circular Cast Iron column of diameter 250 mm carries a vertical load of 600KN at a distance of 35mm from the axis. Find the extreme values of Stress induced in the section.	05
		(ii) Define Slenderness Ratio and Radius of Gyration.	02
	(b)	(i) A hollow steel tube of external diameter 40mm and 5mm thick is used as strut of 4m length. Both ends of the strut are hinged. Find Euler's crippling load, if E=2 x 10 ⁵ N/mm ² .	05
		(ii) List the various testing methods to determine Hardness and	02
		Impact strength. OR	
Q. 4	(a)	Find the normal, tangential and resultant stress on the plane AB as	07
		shown in Figure 2.	
	(b)	Determine the diameter of shaft which will transmit 120KW at 200RPM. The maximum Shear Stress limited to 80N/mm ² .	07
Q.5	(0)	(i) Differentiate 1 - terror Directed 1 - int and Welled 1 - int	0.4
	(a)	(i) Differentiate between Riveted Joint and Welded Joint.	04 03
	(b)	(ii) Mention the applications of Leaf Springs and Helical Springs.(i) Explain Stiffness of Spring.	03
	(D)	(ii) Explain efficiency of Riveted Joint.	03
		OR	U-I
Q.5	(a)	Explain the Brinell Hardness Test with a neat sketch.	07
	(b)	Define the following Terms	07
	` '	(i) Elasticity (ii) Plasticity (iii) Bulk Modulus (iv)Strain Energy (v) Brittleness (vi) Hook's Law (vii) Power Transmitted by Shaft	
