
GUJARAT TECHNOLOGICAL UNIVERSITY MCA Integrated- SEMESTER II • EXAMINATION – WINTER 2016

J			0/12/2016	
Subject Name: Discrete Mathematics For Computer Science Time:10:30a.m. To 01:00p.m Total Marks: Instructions:				
п	isti uč	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 		
Q.1	(a)	Define "Boolean expression". Show that $[a * (b' \oplus c)]' * [b' \oplus (a * c')']' = a * b * c'$	07	
	(b)	Define "Symmetric Boolean expression". Determine whether the following functions are symmetric or not: (i) a'bc' + a'c'd + a'bcd + abc'd	07	
Q.2	(a)	 (ii) abc' + ab'c + a'bc + ab'c' + a'bc' + a'b'c With proper justification give an example of i) A bounded lattice which is complemented but not distributive. ii) A bounded lattice which is distributive but not complemented. iii) A bounded lattice which is neither distributive nor complemented. iv) A bounded lattice which is both distributive and complemented. 	07	
	(b)	Draw Hasse Diagram for poset: < S60 , D >; where aDb means a divides b. Write cover of each elements of S60 OR	07	
	(b)	Define Direct Product of lattices and Draw Hasse Diagrams of $\langle S,D \rangle$, $\langle L,D \rangle$ and $\langle S \times L,D \rangle$ for S={1,3,6} and L={1,2,4}	07	
Q.3	(a)	Use Karnaugh map method to minimize the following Boolean expression (1) f (x,y,z,w) = Σ (0, 1,2,3,13,15) (2) f (x,y,z,w) = Σ (0, 1,2,3,6,7,13,14)	07	
	(b)	Minimize the following function by Quine-Mc Cluskey's method. f (a, b, c, d) = Σ (4,8,9,10,11,12,14,15)	07	
Q.3	(a)	OR In any Boolean Algebra, show that $a = b \leftrightarrow ab' + a'b = 0$	07	
Q.0			07 07	
	(0)	Draw Hasse diagram and find cover of each element of $< L^2$, $\le >$, where \le means (a, b) R (c, d) iff a \le c and b \le d. L2 means L x L. L={0,1}.	07	
Q.4	(a)	(i) Define a subgroup of a group. Write all the subgroups of $\langle Z_6, +_6 \rangle$. What is the relation between order of a subgroup and order of a finite group?	03	
		(ii) State Lagrange's Theorem.	02	
	(b)	(iii) Define Subgroup and Group Homomorphism. Define Cyclic group. Prove that $\langle Z4, +4 \rangle$ is isomorphic to $\langle Z5, *5 \rangle$ where $Z5^* = Z5$ -[0].	02 07	
0.4	(a)	OR	04	
Q.4	(a)	 (i)Define Left Coset and Right Coset.Let H= {0,3,6} in Z₉ under addition. Find left cosets in Z₉. (ii) Define: Normal-Subgroup. Let <z6, +6=""> be the group and H = {0, 3} be the</z6,> 	04 03	
Q.5	(b) (a)	subgroup of Z6.Give an example of Group which is non abelian.1. Define weakly connected, unilaterally connected and strongly connected graphs.2. Define weak, unilateral and strong components. Find the strong, unilateral and weak components for the following digraph.	07 07	

(b) (I) Define (i) A directed tree (ii) A Binary tree (iii) A complete -ary tree.
 (II) Show that in a complete binary tree the total number of edges is given by 2(n_i-1)
 04 Where is n_i the number of terminal nodes.

07

- Q.5 (a) Give three other representations of tree expressed by (v0(v1(v2)(v3)(v4))(v5(v6)(v7)(v8)(v9))(v10(v11)(v12)))
 - Obtain binary tree corresponding to it.
 (b) Define Graph, Directed edge of graph, Diagraph, Mixed graph, In degree of a node, Cycle and Length of a path with suitable example.
 07
