GUJARAT TECHNOLOGICAL UNIVERSITY MCA - SEMESTER-II • EXAMINATION – SUMMER 2013

	Subject Code: 620007 Date: 10-06-201						
Subject Name: Theory Of Computation Time: 10.30 am - 01.00 pm Total N Instructions:							
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.					
Q.1	(a) (b)	Define One-to-One & Onto function with example. In each case, a relation on the set $\{1,2,3\}$ is given. Of the three properties, reflexivity, Symmetry and Transitivity which ones the relation has. Give reasons. i. $R = \{(1,3),(3,1),(2,2)\}$ ii. $R = \{(1,1),(2,2),(3,3),(1,2)\}$	04 04				
	(c)	Let $P(n)$ be the statement : $1+2+3++n = n (n+1)/2$ Show that $P(n)$ is true for every $n \ge 0$ by principle of mathematical induction.	03				
	(d)		03				
Q.2	(a) (b) (c)	 Define Regular Language and Regular Expression over ∑ Construct a Finite Automata for: (0+1)* (01+110) a. Define: Finite Automaton Strong Principle of Mathematical Induction 	03 04 03				
		b. Construct the Finite Automata for: (11+110)*0 OR	04				
	(c)	Given that $L1 = \{x \in (0,1)^* x \text{ ends with } 01\}$ $L2 = \{x \in (0,1)^* x \text{ ends with } 11\}$ Give FA for L1, L2 and L1 U L2.	07				
Q.3	(a)	Find minimal FA for following FA. $Q=\{1,2,3,4,5,6\}$ A= $\{2,5\}$ and $q0=1$ State input - a 1 2 1 2 4 1 3 2 5 4 6 3 5 4 5 6 5 2	07				
	(b)	Define: NFA-^ & Pumping Lemma for Regular Languages					
Q.3	(a)	OR Find the CFG corresponding to the regular expression (011+1)*(01)*	07				

- (b) What is an Ambiguous grammar? Explain this concept with "Dangling 07 Else" problem.
- **Q.4** (a) Let $M = (Q, \Sigma, q0, \delta, A)$ where $Q = \{A, B, C, D, E\}$, q0 = A and $A = \{E\}$ 07 and transition is given as follows.

State (q)	$\delta(q, \wedge)$	δ(q,0)	δ(q,1)
А	{B,D}	{A}	φ
В	φ	{C}	{E}
С	φ	φ	{B}
D	φ	{E}	{D}
Е	φ	φ	ø

Give the transition diagram for above NFA- \wedge & also construct the NFA for the same.

OR

(b) Construct a DPDA accepting balanced strings of Brackets.

07

05

			-						
		State (q)	δ(q,a)	δ(q,b)	$\delta(q, \wedge)$				
		1	φ	φ	{2}				
		2	{3}	φ́	{5}				
		3	φ	{4}	ø				
		4	{4}	ф	$\{1\}$				
		5	φ	{6,7}	ф ф				
		6	{5}	φ	ø				
		7	φ	φ	{1}				
		Find:							
		1. 	$\wedge (\{1\})$						
4		ii.	δ* (1,ab)		1.1				
.4	(b)		hort note on re	ecursive enu	merable an				
	(c)	Define:	Turing Mac	hina					
		ı. ii.	Push Down						
		11.	I usii Dowii	Automata					
.5	(a)	Construct	t a Turing Ma	chine accept	ing Palindr				
-	(b)		he CFG with						
		S→ABA							
				0)R				
) .5	(a)	Construct	t a DPDA to a	accept the lat	nguage of				
		b's given by L={ $x \in \{a, b\}^* na(x) > nb(x) \}$							
	(b)								
		L1UL2, L1L2 and L1* are also CFLs.							
	(c)								
		$L=\{0^{1} 1^{1} i \ge 0\}$							

Q.4 (a) A transition table is given for an NFA- \wedge :
