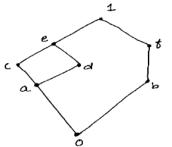
GUJARAT TECHNOLOGICAL UNIVERSITY

MCA Integrated - SEMESTER-II • EXAMINATION - SUMMER • 2014


Subject Code: 4420601

Date: 18-06-2014

07

Subject Name: Discrete Mathematics for Computer Science						
Time: 10:30 am - 01:00 pm	Total Marks: 70					
Instructions:						
1 Attomatical gradiens						

- Attempt all questions. 1.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 With proper justification give an example of (a)
 - i) A bounded lattice which is complemented but not distributive.
 - ii) A bounded lattice which is distributive but not complemented.
 - iii) A bounded lattice which is neither distributive nor complemented.
 - iv) A bounded lattice which is both distributive and complemented.
 - When a poset is said to be a lattice? Explain. Is every poset a lattice? Justify. 07 **(b)** Is the poset $\{\Phi, \{p\}, \{q\}, \{p,q,r\}, \subseteq\}$ a lattice?
- **O.2 (a)** Define: Chain. Determine join-irreducible elements, meet-irreducible elements, 07 atoms and anti-atoms for the lattices shown in the Figure below:

- **(b)** Define: Boolean Algebra. Find all Sub Boolean algebra of Boolean algebra 07 $\langle S_{30}, \Lambda, V, , 0, 1 \rangle$.
 - OR
- i) Given an expression α (a,b,c,d) = $\sum (2,3,6,8,12,15)$, determine the value of 05 **(b)** α (3,5,10,30) where 3,5,10,30 $\mathcal{E} < S_{30}$, D> 02
 - ii) Show that
 - a) a + a' = 1
 - b) a + 0 = a
 - where a + b = (a * b') join (a' * b)

Q.3 Use the K-map representation to find a minimal sum-of-products expression 07 (a) for the following function:

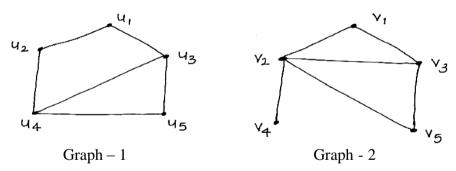
- a) $f(a,b,c,d) = \sum (0,5,7,8,12,14)$
- b) $f(a,b,c,d) = \sum (5,7,10,13,15)$
- Use the Quine-McCluskey representation to find a minimal SOP expression: 07 **(b)** $f(a,b,c,d) = \sum (0,1,6,7,8,913,14,15)$

OR

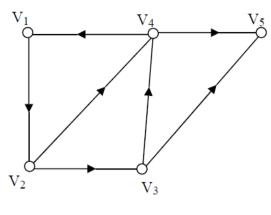
Q.3	(a)		Let(B, *, ', 0, following: a =		-	bra in a	ny Bo	olea	n algebra prove the	03
		•••	ionowing. a –	0 \- a0	a = 0					

- ii) Find the sum of products expression of Boolean function. 03 f(x,y,z) = (x + z) * y01
- iii) Define: Sub-Lattice.

	(b)	Show that the lattice $\langle S_n, D \rangle$ for $n = 216$ is isomorphic to the direct product of lattices for $n = 8$ and $n = 27$.	07
Q.4	(a)	i) Define an abelian group. Show that if every element in a group is its own inverse, then the group must be abelian.ii) Show that every subgroup of a cyclic group is normal.	03 03
		ii) Show that every subgroup of a cyclic group is normal.	03
		iii) Let $(G, *)$ be a group. Let $G = 5$. How many subgroups are there of	
		G? Why ?	01
	(b)	Show that the set of all positive rational number forms an abelian group under the composition defined by $a * b = ab/2$.	07
		OR	
Q.4	(a)	Define: Group & Cyclic Group. Find the generator of (Z_5^* , *5).	07


(b) Find in-degree and out-degree of each node from the following 07 adjacency matrix A and draw its diagraph.

$$\mathbf{A} = \left(\begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{matrix} \right)$$


- **Q.5** (a) Define: Binary tree, Loop, Null graph. Show through two examples with $n_t = 7$ 07 and $n_t = 8$ of complete binary trees that the total number of edges is given by $2(n_t 1)$, where n_t is the number of terminal nodes.
 - (b) Define Directed tree. Give three different tree representations of the following: (v0(v1(v2)(v3)(v4))(v5(v6)(v7)(v8)(v9))(v10(v11)(v12)))) 07

OR

Q.5 (a) Define: Isomorphic Graph, Edge Simple. Verify that, are the following graphs 07 are isomorphic?

(b) Define: Node Base of a simple diagraph. Find the reachability set of all nodes for the digraph given in figure given below: Also find the nodebase for it. Is the graph Strongly or unilaterally connected?
