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Instructions:
1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
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With proper justification give an example of
i) A bounded lattice which is complemented but not distributive.
i) A bounded lattice which is distributive but not complemented.
iii) A bounded lattice which is neither distributive nor complemented.
iv) A bounded lattice which is both distributive and complemented.
When a poset is said to be a lattice? Explain. Is every poset a lattice? Justify.

Is the poset {®, {p}, {a}, {p.q.r}, <} a lattice?

Define: Chain. Determine join-irreducible elements, meet-irreducible elements,
atoms and anti-atoms for the lattices shown in the Figure below:

[o]
Define: Boolean Algebra. Find all Sub Boolean algebra of Boolean algebra
(S30,A,V,‘,O,1>.
OR
i) Given an expression a (a,b,c,d) =3 (2,3,6,8,12,15), determine the value of
a (3,5,10,30) where 3,5,10,30 € <S3p, D>

i) Show that
a) ata =1
b) a+0 =a

wherea+b=(a*b’) join (a’ * b)

Use the K-map representation to find a minimal sum-of-products expression
for the following function:
a) f(ab,cd)=> (0,5,7,8,12,14)
b) f(ab,c,d)=Y (5,7,10,13,15)
Use the Quine-McCluskey representation to find a minimal SOP expression:
f (a,b,c,d) =Y (0,1,6,7,8,913,14,15)
OR
1) Let(B, *, ’, 0, 1) be a boolean algebra in any Boolean algebra prove the
following: a=b < ab’ +a’b = 0.
i) Find the sum of products expression of Boolean function.
fixyz) =(x+2)*y
ii) Define: Sub-Lattice.
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Show that the lattice <S,, D> for n = 216 is isomorphic to the direct product
of lattices for n =8 and n = 27.

i) Define an abelian group. Show that if every element in a group is its
own inverse, then the group must be abelian.
i) Show that every subgroup of a cyclic group is normal.
iii) Let (G, *) be agroup. Let G =5 . How many subgroups are there of
G? Why ?
Show that the set of all positive rational number forms an abelian
group under the composition defined by a * b = ab/2 .
OR
Define: Group & Cyclic Group. Find the generator of ( Zs* , *5).
Find in-degree and out-degree of each node from the following
adjacency matrix A and draw its diagraph.

Define: Binary tree, Loop, Null graph. Show through two examples with n, = 7
and n; = 8 of complete binary trees that the total number of edges is given by
2(n¢ — 1), where n; is the number of terminal nodes.

Define Directed tree. Give three different tree representations of the following:
(VO(vL(v2)(v3)(v4))(v5(v6)(v7)(v8)(v9))(v10(v11)(v12)))

OR
Define: Isomorphic Graph, Edge Simple. Verify that, are the following graphs
are isomorphic?

ol AE!
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(b) Define: Node Base of a simple diagraph. Find the reachability set of all
nodes for the digraph given in figure given below: Also find the nodebase for it.
Is the graph Strongly or unilaterally connected?

\..-' 1 \v4 ‘\f.-':_\

Y

O
A

4

\"Y 2 vV 3

*kkkkkhkihkhkkikikx

07



