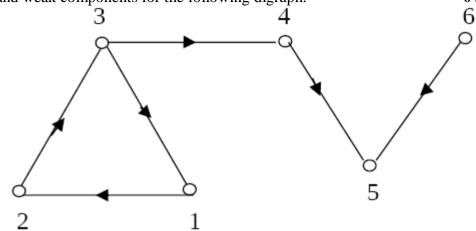
Seat No.:	Enrolment No.
-----------	---------------

Subject Name: Discrete Mathematics for Computer Science

Subject Code: 610003

GUJARAT TECHNOLOGICAL UNIVERSITY


MCA - SEMESTER-I • EXAMINATION - SUMMER • 2014

Date: 18-06-2014

		ne: 10:30 am - 01:00 pm Total Marks: 70 ructions:	
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a)	Define the following terms with proper example: 1. Universal Quantifier 2. Existential Quantifier 3. Tautology 4. Contradiction	[2+2+2+1]
	(b)	 Contradiction Define Join Irreducible elements and Atoms with proper example. Define Meet Irreducible elements and Anti-atoms with proper example. 	04 03
Q.2	(a)	1. Define Group. Check Whether <i, ×=""> forms a group or not where I is the</i,>	03
		set of Integers and \times is multiplication operation. 2. Define Sum-Of Product canonical form. Write Boolean Expression $x_1 * x_2$ in an equivalent sum-of-product canonical form in three variables x_1 , x_2 and x_3 .	04
	(b)	Define left coset and right coset. Find the left cosets of $\{[0], [3]\}$ in the group $\langle Z_6, +_6 \rangle$. State Lagrange's Theorem.	[2+3+2]
		OR	
	(b)	Define equivalence relation. Let Z be the set of integers and R be the relation called Congruence modulo 5" defined by $R = \{ \langle x,y \rangle \mid x \in Z \land y \in Z \land (x-y) \text{ is divisible by 5} \}$ Show that R is an equivalence relation. Determine the equivalence classes generated by the elements of Z.	07
Q.3	(a)	Define Cyclic group. Prove that $\langle Z4, +_4 \rangle$ is isomorphic to $\langle Z_5, *_5 \rangle$ where $Z_5^* {}_= Z_5$ -[0].	[1+6]
	(b)	Find a minimal sum-of-product form using K-map (i) α (x, y, z) = xyz + xyz' + x'yz' + x'y'z (ii) α (x, y, z) = xyz + xyz' + xy'z + x'yz + x'y'z OR	07
Q.3	(a)	Define Sub Boolean Algebra. Find all sub-algebras of Boolean algebra $\langle S_{30}, *, \oplus, `, 0, 1 \rangle$. Write proper steps.	07
	(b)	(i) Show that in a lattice if $x \le y \le z$ then $x \oplus y = y * z$	03
		(ii)In a lattice show that $(a * b) \oplus (c * d) \le (a \oplus c) * (b \oplus d)$.	04

- **Q.4** (a)1. Define weakly connected, unilaterally connected and strongly connected graphs.
 - 2. Define weak, unilateral and strong components. Find the strong, unilateral and weak components for the following digraph.

 04

(b) Draw di-graph and find in-degree and out-degree of each vertex from the given adjacency matrix. Using adjacency matrix, find total numbers of path of length 1 and 2 between each vertex.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
OR

Q.4 (a) Define Sub-group. Find the subgroups of $\langle Z_{10}, +_{10} \rangle$

07

07

[3+4]

03

(b) Define "Lattice as an Algebraic System", "Complete Lattice" and "Distributive Lattice.

Let the sets S0, S1,...., S7 be given by

 $S0 = \{a, b, c, d, e, f\}, S1 = \{a, b, c, d, e\}, S2 = \{a, b, c, e, f\}, S3 = \{a, b, c, e\}, S4 = \{a, b, c\}, S5 = \{a, b\}, S6 = \{a, c\}, S7 = \{a\}$

Draw the diagram of $\langle L, \subseteq \rangle$,

where $L = \{S0, S1, S2, ..., S7\}$

- Q.5 (a) Describe the application of Boolean algebra to Relational Database with example.
 - (b) Find minimal SOP using Quine Mc-cluskey method $F(a,b,c,d) = \Sigma (0,1,2,5,6,7,8,9,10,14)$

OR

- Q.5 (a) 1. Define Compatibility Relation, Partial order relation with proper example. 03
 - 2. Let R and S be two relations on a set of positive integers I,

 $R = \{ < x, 3x > /x \in I \}$

 $S = \{ < x, 4x > / x \in I \}$

Then find R 0 R and R 0 S 0 R.

- **3.** Let $S = \{2,4,5,10,15,20\}$ and the relation \leq is the divisibility relation. **02** Draw the Hasse diagram of $\leq S$, $\leq >$.
- (b) Show that the lattice <Sn,D> for n=100 is isomorphic to the direct product of lattice for n=4 and n=25.
