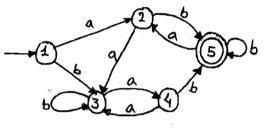
GUJARAT TECHNOLOGICAL UNIVERSITY MCA - SEMESTER-II • EXAMINATION – SUMMER • 2014

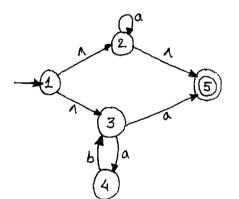
		WICA - SEMIESTER-II · EXAMINATION - SUMMER · 2014				
Subj	ect	Code: 620007 Date: 21-06-2014				
Subj	ect]	Name: Theory of Computation				
•):30 am - 01:00 pm Total Marks: 70	Total Marks: 70			
Instru		-				
		Attempt all questions.				
		Make suitable assumptions wherever necessary.				
	3.	Figures to the right indicate full marks.				
Q.1	(a)	Write the regular expressions corresponding to each of the following:	07			
		1. Strings of even length				
		2. Strings with odd number of 1's				
		3. Strings of length 3 or less				
		4. Strings that are valid C identifies				
		5. Strings ending in 11				
		6. Strings containing exactly two 0's				
		7. Stings ending in 01				
	(b)		03			
		(ii) Explain Logical Quantifiers and Quantified Statement	04			
Q.2	(a)	Explain principle of mathematical induction. Solve the following: Prove that for every n	07			
		$\geq 0,$				
		$\sum_{i=1}^{k} i^2 = k(k+1)(2k+1)/6.$				
	(b)	i. Define NFA with suitable example in details. Also differentiate NFA and DFA	04			
		ii. Prove that if either of a and b is even number then a*b is even number.				
			03			
		OR	~ -			
	(b)	1	07			
		Also define \wedge closure.				
Q.3	(a)	An NFA with states 1-5 and input alphabet $\{a,b\}$ has the following transition table:	07			
×	(4)		07			


q	δ(q,a)	δ(q,b)
1	{1,2}	{1}
2	{3}	{3}
3	{4}	{4}
4	{5}	φ
5	φ	{5}

- i. Calculate $\delta^*(1, ab)$
- ii. Calculate $\delta^*(1, abaab)$
- (b) Construct FA for the following regular expressions:
 - i. (11 + 10)*
 - ii. (111 + 100)*0

q	δ(q,a)	δ(q,b)	$\delta(q, \wedge)$
1	φ	φ	{2}
2	{3}	φ	{5}
3	φ	{4}	φ
4	{4}	φ	{1}
5	φ	{6,7}	φ
6	{5}	φ	φ
7	ø	φ	{1}

Find the following:


- i. $\delta^*(1, ba)$
- ii. $\delta^*(1, ababa)$
- (b) Construct FA for the following regular expressions:
 - i. $(0+1)^* 0$
 - ii. $(0+1)^*(1+00)(0+1)^*$
- Q.4 (a) Find minimum state FA for the following:

(b) Given that $L1 = \{x \in (0,1)^* | x \text{ ends with } 00\}$ $L2 = \{x \in (0,1)^* | x \text{ ends with } 01\}$ Give FA for L1, L2 and L1 \cap L2

Q.4 (a) For the given NFA- \wedge find the minimum state FA:

- Q.4 (b) Given that $L1 = \{x \in (0,1)^* | x \text{ ends with } 00\}$ $L2 = \{x \in (0,1)^* | x \text{ ends with } 01\}$ Give FA for L1, L2 and L1 – L2
- Q.5 (a) Write a short note on turing machines. Support with an example
 (b) Define PDA. Give a suitable example for the same.

07

07

07

07

07

07

07

Q.5 (a) Convert the following grammar into Chomsky normal form $S \rightarrow AACD$

 $A \rightarrow aAb \mid \land$

 $C \rightarrow aC \mid a$

 $D \rightarrow aDa \mid bDb \mid \land$

- (**b**) Write short notes on:
 - i. Pumping lemma
 - ii. Recursively enumerable languages

03

04