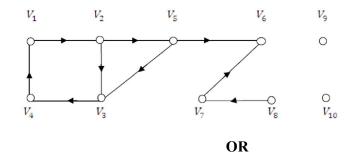
GUJARAT TECHNOLOGICAL UNIVERSITY MCA Integrated - SEMESTER-II • EXAMINATION – SUMMER • 2015

Subject Code: 4420601 Date: 28-05-2015 **Subject Name: Discrete Mathematics for Computer Science** Time: 10:30 am - 01:00 pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Define poset. When is a poset said to be a lattice? Draw Hasse diagrams of 07 **Q.1** (a) following posets and examine which of them are lattices. $(a) < P(S), \subseteq >, S = \{a, b, c\}$ (b) <{1, 2, 3, 12, 18}, D > $(c) < \{1, 2, 3, 6\}, D >$ $(d) < S_{16}, D >.$ (b) Define: Boolean Algebra. Find all Sub Boolean Algebra of Boolean Algebra 07 $<S_{30}$, , V, =0,1>. 04 **Q.2** (a) (1) Draw Hasse- diagram for the following : i) $< S_{105}, D >$ ii) $< S_{70}D >$ (2) With proper justification give an example of 03 a) A bounded lattice which is complemented but not distributive. b) A bounded lattice which is distributive but not complemented. c) A bounded lattice which is both distributive and complemented. Define: **(b)** 07 i) Join irreducible elements. ii) Atoms of a Boolean algebra. Determine Join-irreducible elements and atoms of following Boolean algebra also draw the Hasse Diagram: i) (S_{210}, D) ii) $\langle P(S), , \cup, ', , S \rangle$ where $S = \{a, b, c\}$ OR Define Lower bound and Upper bound. Let $P = \langle 3, 5, 9, 15, 24, 45 \rangle$, 07 **(b)** D> be a poset. Draw the Hasse diagram. Find i) maximal element. & minimal element. ii) the greatest and least element. iii) the lower bounds of $\{3, 5\}$, if any & the upper bound of $\{9, 15\}$, if any iv) GLB of {15, 45} & LUB of {3, 9, 15}.

Q.3 (a) Show that the lattice $\langle S_n, D \rangle$ for n=100 is Isomorphic to the direct product of 07 lattice for n=4 & n=25.


1

(b) Use the Quine-McCluskey algorithm to find the prime implicants of the 07 expression: $f(a, b, c, d) = \hat{U}(0, 1, 4, 5, 9, 11)$. Also obtain a minimal expression for the same.

OR

Q.3	(a)	Use K-map to find a minimal SOP expression for the function given by \hat{U} (0,1,2,3,6,7,13,14) in four variables w,x,y,z.	07
	(b)	 (1) Explain Stoneøs representation theorem by giving a suitable example. (2) Obtain the sum-of-products canonical form of the following Boolean expressions: i) (x1 ⊕ x2) ⊕ (x1 * x3) ii) (x1 * x2) ⊕ x3 	03 04
Q.4	(a)	 (1) Define Sub-lattice. Write any four sublattices of (S₁₂, D). (2) Describe the application of Boolean algebra to Relational Database. 	03 04
	(b)	(1) Show that in a group $\langle G, * \rangle$ if for any a , $b \in G$, $(a * b)^2 = a^2 * b^2$, then $\langle G, * \rangle$ must be abelian.	03
		(2) Show that $\langle \{1,4,13,16\}, x_{17} \rangle$ is a subgroup of $\langle Z_{17}^*, x_{17} \rangle$. OR	04
Q.4	(a)	Show that the set of all positive rational number forms an abelian group under the composition defined by $a * b = ab/2$.	07
	(b)	Define Cyclic Group. Prove that $\langle Z_7^*, x_7 \rangle$ is a group. Also find generators of this group.	07
Q.5	(a)	Define : Forest, Binary Tree, Node Base, Cycle, Elementary Path, Isolated Node, Graph.	07

(b) Define node base of a simple digraph. Find reachablility set of all nodes for 07 the following diagraph.

Q.5 (a) Define: Isomorphic Graph, Sling and Weighted Graph. State weather the following digraphs are isomorphic or not:

07

(b) Define: Directed tree and its leaf. Draw the graph of the tree represented by (A(B(C(D)(E)))(F(G)(H)(J))(K(L)(M)(N(P)(Q(R))))).
 Obtain the binary tree corresponding to it.
