Seat No.: _

Enrolment No.

Total Marks: 70

07

03

07

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA SEMESTER II –EXAMINATION – SUMMER 2015 de: 620007 Date:04-06-2015

Subject code: 620007

Subject Name: Theory of Computation

Time:10:30 am - 01:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) 1. Define Compositions and inverse of functions using example.
 2. In each case, a relation on the aet {1,2,3} is given. Of the three properties reflexivity, symmetry and transitivity, Determine which ones the relation has.
 - i) $R = \{(1,3), (3,1), (2,2)\}$
 - ii) $R = \{(1,1),(2,2),(3,3),(1,2)\}$
 - iii) R = Ø
 - **(b)** Prove that for every $n \ge 0$, $f(n) \le (5/3)^n$

Q.2 (a) Answer the following,

- (1) Find a regular expression corresponding to each of the **04** following subsets of $\{0,1\}^*$
 - a. The language of all strings containing at least two 0's.
 - b. The language of all strings not containing the substring 00.
 - c. The language of all strings in which the number of 0's is even.
 - d. The language of all strings containing exactly two 0's.

(2) Prove that $\sqrt{2}$ is irrational.

(b) Draw FA to recognize the following languages defined over $\{0,1\}^*$ 07

- (i) $(111 + 100)^*0$
- (ii) $\{00\}^* \{11\}^*$

OR

(b) Consider languages L1 and L2 as under:

 $L1 = \{x \mid x \text{ ends with } 01\}$

L2= $\{x | x \text{ ends with } 11\}$

Draw FA for

- i) L1
- ii) L2
- iii) L1-L2
- Q.3 (a) An NFA with 1-5 states and input alphabet {a,b} has the following 07 transition table.

q	δ(q,a)	δ(q,b)
1	{1,2}	{1}
2	{3}	{3}
3	{4}	{4}
4	{5}	Ø
5	Ø	{5}

i) Draw a transition diagram.

- ii) Calculate $\delta^*(1,ab)$.
- iii) Calculate $\delta^*(1,abaab)$
- (b) Define Λ closure. Give recursive definition of δ^* for NFA- Λ . Draw 07 NFA Λ recognizing $(0+1)^*(011+01010)(0+1)^*$

- **Q.3** (a) Draw NFA- Λ accepting $\{0\}^*\{0,1\}^*\{0\}^*$. And Convert it to NFA and **07** FA.
 - (b) Define NFA. Give non recursive definition of δ^* for an NFA- Λ . 07 Convert regular expression $(0+1)^*(10) + (00)^*(11)^*$ to an NFA- Λ .
- Q.4 (a) State the pumping lemma for regular languages. Prove using pumping 07 lemma that pal, the language of palindromes is not regular.
 - (b) Convert following grammar into CNF(Chomsky Normal Form). 07 $S \rightarrow AACD$
 - $A \rightarrow aAb / \Lambda$
 - $C \rightarrow aC/a$
 - $D \rightarrow aDa/bDb/\Lambda$

OR

- Q.4 (a) Define CFG. Find language corresponding to following CFG 07 production.
 - i) $S \rightarrow aSa \mid bSb \mid \Lambda$
 - ii) $S \rightarrow aS \mid bS \mid a$
 - iii) $S \rightarrow SaS| b$
 - iv) $S \rightarrow aT \mid bT \mid \Lambda$
 - $T \rightarrow aS \mid bS$
 - (b) Define DPDA. Give transition table for deterministic PDA recognizing 07 following language.
 L = { x ∈ {0.1}* | n₀(x) ≠ n₁(x) }
- Q.5 (a) State pumping lemma for context free language(CFL). Prove that the 07 language $L = \{a^i b^j c^k \mid i < j < k\}$ is not a context free language.
 - (b) Define Turing Machine. Draw transition diagram for Turing machine 07 accepting the following language.
 L = {aⁱb^j | i < j }

OR

- Q.5 (a) (1) Write a short note on recursive enumerable and recursive language. 04 (2) Write a short note on derivation tree with reference to CFG. 03
 - (b) Construct a Turing machine that accepts the language of palindromes 07 over {a,b}. Also specify the moves to trace the strings abaa.
