GUJARAT TECHNOLOGICAL UNIVERSITY MCA - SEMESTER-IV EXAMINATION – SUMMER 2015

Subj	Subject Code: 640010 Date:20									/05/2015		
Subj	ect N	Name: Anal	lysis &	Design	of Algo	orithm			Total Mar			
1 IIIIt Instru	ction	:50 am to u)1:00 p	m					I otal Ivial	rks: /U		
msuu	1.	Attempt all qu	uestions.									
	2. 3.	Make suitable Figures to the	e assump e right ind	tions when dicate full	rever nec marks.	essary.						
Q.1	(a)	Explain all asymptotic notations										
	(b)) Define Algorithm. List all the different algorithm strategies.								03		
	(c)	State the functional algorithmic specification for computing power x ⁿ . 07 Establish the correctness and efficiency of this functional algorithm using the										
		Principles of Mathematical Induction.										
0.2	(a)	Write an algorithm for merge sort and derive its time complexity. 07										
X	(b)	Write an all example.	lgorithm	for Brea	dth First	Search	(BFS)	and ex	plain it with	07		
		~ .			OF	2		_				
	(b)) Briefly describe Pigeonhole Principle (or Dirichlet Drawer Principle) and also State Chinese Remainder theorem								07		
Q.3	(a)	Explain how to find out Longest Common Subsequence of two strings using Dynamic Programming method.Find any one Longest Common Subsequence of given two strings using Dynamic Programming. S1=abbacdcba S2=bcdbbcaac Write down four basic steps used in a dynamic programming 0's solution.Briefly describe Travelling Salesman Problem and write down the basic solution methodology using dynamic programming approach.								07		
	(b)									07		
Q.3	(a)	Schedule th	e jobs in	such a w	ay that s	• o as to §	get max	imum pi	ofit.	07		
-	. ,	Jobs	J1	J2	J3	J4	J5	J6				
		Profit	20	10	7	5	15	3				
		Deadline	2	1	3	1	1	3				
	(b)	Explain Dij	kstra's S	hortest P	ath Algor	rithm w	ith suita	ble exar	nple.	07		
04	(a)	Explain in h	orief the	concent o	of binomi	al hean a	and Fib	onacci h	ean	04		
2.1	(b)	Write a short note on Approximate Solutions of NP-Complete problems.										
	(c)	What is Convex Hulls problem? Give an example of a 2-D Convex Hull and illustrate it with respect to the definition of Convex Hull. OR								05		
Q.4	(a)	Explain Splay Trees 04										
	(b)	What is Hamiltonian Circuit (Cycle)? Can it be used to solve Travelling 05 Salesman Problem? Briefly Explain.										
Q.4	(c)	Discuss Rec the reduction	duction i on for an	n terms o y one kno	of P & NF own prob	P Compl lem.	ete Pro	blems. A	Also explain	05		

Q.5	(a)	Explain:	07
		NP Complete Problem, Time Complexity, Space Efficiency, Theta	
		Notation	
	(b)	(i) Write a short note on Approximate Solutions to NP-Complete	07
		problems.	
		(ii) Give examples to show that the assumption that "P means	

'easy' " and " 'not in P' means 'hard' " is not always true in practice.

OR

Q.5 (a) Explain Halting Problem.

07

(b) Briefly describe NP-Complete problems. What is the significance of NP 07 Complete problems? Give an example of NP-Complete problem.
