GUJARAT TECHNOLOGICAL UNIVERSITY MCA - SEMESTER- II • EXAMINATION – WINTER 2016

Subject Code: 2620004 Date:05/01/2017

Subject Name: Computer Oriented Numerical Methods Time:02.30 PM TO 05.00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a) Do as directed :

- (i) Find relative error for 3.14 as a approximation of 22/7
- (ii) Round off four decimal digit: 0.00345575
- (iii) True/False : Number of row and Number of column is always same in scaler matrix
- (iv) Write the formula of A^{-1} (Assume A is a matrix).
- (v) Define Symmetric and skew symmetric matrix with example.
- (vi) Find positive root of $x^3 + 3x^2 27x + 25$ by discarte's Rule of sign.
- (vii) Give any two names of closed iterative method & Open iterative method
- (b) Determine the root of equation $x^4 -x-10 = 0$ correct upto 3 place of 07 decimal by using Bisection method
- Q.2 (a) Determine the root of equation $e^x = 2x + 1$ correct upto 3 place of 07 decimal by using Newton Raphson(NR) method.
 - (b) Determine the root of equation $f(x) = x \cos x$ correct upto 3 place of 07 decimal by using False position method (Perform 5 iterations only)

OR

- (b) Find the root of the equation $x^3 + 2x^2 + 10x 20 = 0$ using Birge-Vieta method (Take r0 = 1). Perform only three iterations.
- Q.3 (a) The population of a certain town as obtained from census data is given 07 in the following table :

Year	1931	1941	1951	1961	1971
Population	40.62	60.80	79.95	103.56	132.65

Find the rate of growth of the population in the year 1961.

07

(b) Fit a Straight line Y=aX+b by the method of Least square to the following data.

X	1	3	5	7	0
Y	1.5	2.8	4.0	4.7	6.0

OR	

Q.3 (a) Using langrange's interpolation, find f (0) when the data are given in 07 the following table.

X	-1	-2	2	4
f(x)	-1	-9	11	69

- (b) Find out y(0.05) by using Newton's appropriate interpolation method 07 when y(0)= 1, y(0.1)= 0.9975, y(0.2)=0.9900, y(0.3)=0.9980
- Q.4 (a) Find $\int_0^4 (x^3 2x^2 + 1) dx$ using 07 Trapezoidal rule and Simpson's $\frac{3}{8}$ rule taking h = 1 for both the cases.
 - (b) Define any six type of matrix with example.

Q.4 (a	(a)	(a)	c1 dx	OR	
	()	Find	$\int_0^1 \frac{\mathrm{d}x}{1+x}$	using Simpson's 1/3 rule by taking 10 sub intervals.	07

(b) Apply Gauss elimination method to find root of following linear equations.

$$x + 2y + 3z = 4$$

 $x + y + z = 3$
 $2x + 2y + z = 1$

- Q.5 (a) Using Runge-Kutta method of order 2, find y for x=1 given that 07 differential equation $dy/dx = y + x^2$, y(0) = 1 and h=0.5
 - (b) Find Transpose of matrix, Trace of matrix and Adjoint of following 07 matrix

[3	7	-2]
2	3	1
4	5	9

OR

Q.5 (a) Find y(0.4) by using Milne's predictor corrector method when dy/dx= 07 xy+1 & y(0)=1, y(0.1)=1.1053, y(0.2)=1.2229, y(0.3)=1.3552

(b) Find out cubic alpine for following data & also find out y(1.5) by cubic 07 spline method when y(1)=-6, y(2)=-1, y(3)=16

07

07

07