GUJARAT TECHNOLOGICAL UNIVERSITY MCA SEMESTER- I• EXAMINATION – WINTER 2016

Su	bject	t Code:610003	Date:03/01/2017	
Su	bject	Name: Discrete Mathematics for Computer Scienc	e	
Ti	Total Marks: 70			
Instructions:				
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	i) Consider the statement, "If today is Monday, then I will go f walk". Write converse, inverse and contrapositive for the giv statement.	or a 03 ven	
		ii) What is Discrete Mathematics? State the importance of it.	04	
	(b)	Using indirect proof technique, show that if a^2+3 is odd, then a even.	is 07	
Q.2	(a)	Let $X = \{1,2,3,4\}$ and $R = \{(x, y) / x > y\}$ be relation on it.		
		(i) Write properties of R.	03	
		(ii) Write matrix of R.	02	
		(iii) Draw graph of R.	02	
	(b)	i) Define: Equivalence Relation. Let $R = \{(1,2), (3,4), (2,2)\}$ as $S = \{(4,2), (2,5), (3,1), (1,3)\}$. Find $R \circ S$, $S \circ R$, and $R \circ R$.	und 04	
		ii) Test the validity of the logical consequences: All dogs fetch.	03	
		Kitty does not fetch.		
		Therefore Kitty is not a dog.		

OR

(b) Define: Lattice. Determine join-irreducible elements, meet-irreducible elements, 07 atoms and anti-atoms for the lattices shown in the Figure given below:

Q.3 (a) Use the Quine McClusky method to simplify the SOP expansion, $f(a, b, c, d) = \Sigma (0, 2, 4, 6, 8, 10, 12, 14)$ 07

(b) Define: Isomorphic Lattices. Draw the Hasse diagrams of lattices

- i) $(S_4 \times S_{25}, D)$
- ii) (S₁₀₀, D)

Check whether these lattices are isomorphic?

OR

Q.3	(a)	Use K - map representation to find a minimal sum-of-product expression i) $f(a, b, c, d) = \sum (10, 12, 13, 14, 15)$ ii) $f(a, b, c, d) = \sum (0, 1, 2, 3, 13, 15)$	
	(b)	 i) Define a sub-lattice. Give any four sub-lattices of the lattice (S₁₂, D). ii) In poset (S₃₆, D), find i) GLB X, LUB X (ii) GLB Y, LUB Y where X = { 4, 6, 12 } and Y = { 3, 6, 9 }. 	03 04
Q.4	(a)	Define cyclic group. Show that cyclic group is abelian but converse is not true. Is $\langle z5, +5 \rangle$ a cyclic group? If so, find its generators.	07
	(b)	Define subgroup of a group, left coset of a subgroup $\langle H, * \rangle$ in the group $\langle G, * \rangle$. Find left cosets of {[0], [3]} in the group $\langle Z6, +6 \rangle$.	07
		OR	
Q.4	(a)	i) Show that in a group $\langle G, * \rangle$, if for any a, b $\in G$, $(a * b)^2 = a^2 * b^2$, then $\langle G, * \rangle$ must be abelian.	03
		iii) Show that $\langle \{1,4,13,16\}, *_{17} \rangle$ is a subgroup of $\langle Z_{17}^*, *_{17} \rangle$.	04
	(b)	i) Define: POSET. Let $P(x, y)$ denote the sentence: $2x + y = 1$. What are the truth values of $\forall x \exists y P(x, y), \forall x \forall y P(x, y)$ and $\exists x \exists y P(x, y)$ where the domain of x, y is the set of all integers?	04
		ii) Show without constructing the truth table that the statement formula $\sim p \rightarrow (p \rightarrow q)$ is a tautology	03
Q.5	(a)	Define: Path, Elementary Path, Cycle, Binary Tree, Sling, Isolated Node, Null Graph	07

(b) Define weakly connected, unilaterally connected and strongly connected 07 graphs. Find the strong, unilateral and weak components for the following digraph.

OR

07

Q.5 (a) Draw di-graph and find in-degree and out-degree of each vertex from the given adjacency matrix. Using adjacency matrix, find total numbers of path of length 1 between each vertex.

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

(b) Define: Leaf. Draw the graph of the tree represented by (A(B(C(D)(E)))(F(G)(H)(J))(K(L)(M)(N(P)(Q(R))))). Obtain the binary tree corresponding to it.

07