Enrolment No. Seat No.: **GUJARAT TECHNOLOGICAL UNIVERSITY Regular/Remedial EXAMINATION** MCA SEMESTER –I Subject code: 2610003 Date: 05/01/2013 Subject Name: Discrete Mathematics for Computer Science Time: 02:30 pm – 05:00 pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Let $X = \{1, 2, 3, 4\}$ and Q-1 (a) $R = \{(1,1), (1,4), (4,1), (4,4), (2,2), (2,3), (3,2), (3,3)\}$ [2] (i) write properties of R. [1] (ii) write the matrix of R. [2] (iii) Sketch the graph of R. From the graph, write partition of X. [2] (iv) Is R is a function ? justify your answer. (i) Define a group. Show that $(Z_6, +_6)$ is a group. [2] (b) (ii) Define a subgroup of a group. Write all the subgroups of $(Z_6, +_6)$. [3] What is the relation between order of a subgroup and order of a finite group? (iii) Define a cyclic group. Is $(Z_6, +_6)$ cyclic? Justify your answer. [2] Give an illustration of [3] Q-2 (a) (I) (i) A bounded lattice which is complemented but not distributive. (ii) A bounded lattice which is distributive but not complemented. (iii) A bounded lattice which is both distributive and complemented. [4] (II) Draw Hasse diagram of following Posets . (i) (S_{30}, D) (ii) (S_{36}, D)

- (b) Define an equivalence relation. Let ^{*Z*} be the set of integers and ^{*R*} be the [7] relation " congruence modulo ⁵ " defined as $R = \{(x, y) / x \in Z \land y \in Z \land (x - y) \text{ is divisible by 5} \}$ Show that ^{*R*} is an equivalence relation on ^{*Z*}. Determine the equivalence classes generated by the elements of ^{*Z*}.
 - OR
- (b) (I) Define a partial order relation. Let ^X be the set of positive integers and ^R be ^[4] the relation "^{xDy}" where ^D stands for "divides". Show that ^D is a partial order relation on ^X.
 - (II) Define a Poset . In Poset (S_{75}, D) find lower bounds of the subsets [3] $A = \{5, 15, 25\}_{and} B = \{3, 15, 75\}_{and} B =$
- Q-3 (a) (I) Let p and q be two statements. Define conditional statement $p \rightarrow q$. Write its [4] converse, inverse and contrapositive.
 - (II) Define universal quantifier. Write the universal quantification of the sentence: [3] $x^2 + x$ is an even integer, where x is an even integer.

Is this universal quantification a true statement ?

- (b) (I) Define an abelian group. Show that in a group (G, *), if for any $a, b \in G$, [3] $(a * b)^2 = a^2 * b^2$ then (G, *) must be abelian.
 - (II) Define: (i) A group homomorphism [4]
 (ii) Kernel of homomorphism g is a subgroup of (*G*, *), where g is a

homomorphism from (G, *) to (H, Δ) .

OR

Q-3 (a) (I)Define existential quantifier. Write existential quantification of the sentence : [3]x is a prime integer where x is an odd integer.Is this existential quantification a true statement ?(II)Test the validity of logical consequence : [2]All dogs fetch.All dogs fetch.Ketty does not fetch.Therefore Ketty is not a dog.(III)Using truth table, prove that $\sim (p \rightarrow q) \equiv p \land (\sim q)$.

- (b) (I) Define an abelian group. Show that if every element in a group is its own [3] inverse, then the group must be abelian.
 - (II) Let $(H_1, *)$ and $(H_2, *)$ be subgroups of a group (G, *). Show that $(H_1 \cap H_2, *)$ is also a subgroup of (G, *). Will $(H_1 \cup H_2, *)$ be also a subgroup of (G, *)?

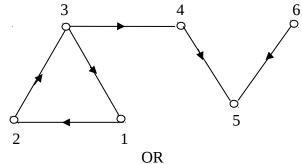
Q-4 (a) (I) Define a sublattice. Write any four sublattices of
$$(S_{12}, D)$$
. [3]

- (II) Define a Boolean Algebra. Show that in a Boolean Algebra [4] $(a * b)' = a' \oplus b'$ and $(a \oplus b)' = a' * b'$
- (b) (I) Define a symmetric Boolean expression. Determine whether following [3] expressions are symmetric or not.
 (i) (x₁ * x₂') ⊕ (x₁' * x₂)
 (ii) (x₁' * x₂') ⊕ (x₁ ⊕ x₂)
 - (II) Use the Quine Mc Clusky method to simplify the sum-of-product expression: [4] $f(a, b, c, d) = \sum (10, 12, 13, 14, 15)$

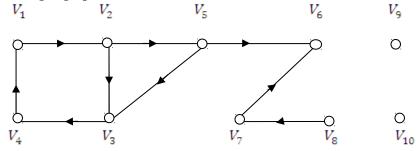
OR

- Q-4 (a) Define direct product of two lattices. Show that the lattice (S_{216}, D) is [7] isomorphic to the direct product of lattices (S_8, D) and (S_{27}, D) .
 - (b) (I) Show that in a Boolean Algebra $a \le b \Leftrightarrow b' \le a'$. [3]
 - (II) Use Karnaugh map representation to find a minimal sum-of-product [4] $f(a, b, c, d) = \sum (0, 1, 2, 3, 13, 15)$.
- Q-5 (a) (I) Show that the sum of indegrees of all the nodes of a simple digraph is equal to [3] the sum of outdegrees of all its nodes and that this sum is equal to the number of edges of the graph.
 - (II) Define isomorphic graphs. State whether the following digraphs are [4] isomorphic or not. Justify your answer.

- (b) (I) Define weakly connected, unilaterally connected and strongly connected [3] graphs.
 - (II) Define weak, unilateral and strong components. Find the strong, unilateral and [4] weak components for the following digraph.



Q-5 (a) Define node base of a simple digraph. Find the reachability set of all nodes for [7] the following digraph.



(b) (I) Define (i) A directed tree (ii) A Binary tree (iii) A complete m-ary tree. [3]

(II) Show that in a complete binary tree the total number of edges is given by [4] $2(n_i - 1)$ where n_i is the number of terminal nodes.
