GUJARAT TECHNOLOGICAL UNIVERSITY M.C.A.- SEMESTER – II • EXAMINATION – WINTER 2012

Subject code: 2620004

Date: 29-12-2012

Subject Name: Computer Oriented Numerical Methods Time: 02:30 pm – 05:00 pm Total

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) What is Total Numerical Error? Explain different types of 07 numerical errors with suitable example.
 - (b) State the convergence criteria for Gauss-Seidel method to solve 07 system of linear equations. How convergence of Gauss-Seidel method can be improved? Use Gauss-Seidel method to find the solution of the following system of equations. 50x + 2y - 3z + 6w = 1903x + 65y + 2z + w = 80-x + y + 33z + 3w = 60

$$x - 3y + 2z - 55w = 60$$

0

4.2

- Q.2 (a) State Descarte's rule of sign to determine number of positive root 07 for the given polynomial equation. Find a root of the equation $f(x) = x^3 3x 5 = 0$ using Regula Falsi method iterate until an approximate percent relative error e_a falls below 0.1 %, where root lies between [2,3].
 - (b) Write the pitfalls of Newton-Raphson method. Solve $\sin x = 1 + x^3$ 07 using Newton Raphson method considering initial value as (-1.1).

- (b) Solve the polynomial equation $f(x) = x^3 6x^2 + 11x 6 = 0$, taking 07 initial value as 0.5, using Birge- Vieta Method up to four significant digit accuracy.
- Q.3 (a) Fit a straight line to the following data by the method of least 07 square.

X	3.4	4.3	5.4	6.7	8.7	10.6
у	4.5	5.8	6.8	8.1	10.5	12.7

(b) From the following values of density of saturated water for various 07 temperatures of saturated steam, find by interpolation the densities when the temperatures are 130° c and 275° c respectively

$\operatorname{Temp}^0 C (=T)$	100	150	200	250	300		
Density hg/m^3 (=d)	958	917	865	799	712		
OR							

Q.3 (a) Fit a relation of the form $Q = aH^b$ that best fits the following data: 07 H 1.2 1.4 1.6 1.8 2.0 2.4

6.1

(b) Write algorithm / pseudocode to interpolate y using the given pairs 07 of values of x and y by Newton's divided difference interpolation formula.

8.5

11.5

14.9

23.5

Q.4 (a)

Find the values of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=1.1 from the following data

using Newton's forward difference formula.

X	1.0	1.2	1.4	1.6	1.8	2.0	
у	0	0.128	0.544	1.296	2.432	4	
	$\frac{\pi}{2}$						07

Evaluate $\int_{0}^{\infty} e^{\sin x} dx$, using Simpson's 3/8 rule with six sub intervals. **(b)**

OR

07

07

(a) Write algorithm / pseudocode to numerically integrate $\int_{-\infty}^{\infty} f(x) dx$ Q.4 using Trapezoidal and Simpson's 1/3 rule.

Q.4 The population of a certain town as obtained from census data is 07 **(b)** given in the following table :

given in the following tuble .						
Year	1951	1961	1971	1981	1991	
Population	19.96	36.65	58.81	77.21	94.61	
(in thousands)						

Find the rate of growth of the population in the year 1981.

- Q.5 (a) What is partial pivoting? State the advantage of applying partial 07 pivoting to Gauss Elimination method. Solve the following system of equations using gauss elimination method.
 - 2x + y + z = 10
 - 3x + 2y + 3z = 18
 - X + 4y + 9z = 16
 - Write algorithm / pseudocode to solve given ordinary differential 07 **(b)** equation provided with initial values using Runge-Kutta 4th order method.

OR

Find the largest eigen value and corresponding eigen vector of the 07 Q.5 (a) following matrix using power method using $x_0 = [1,0,0]^T$.

> 25 1 0 $A = \left| \begin{array}{ccc} 1 & 3 & 0 \\ 2 & 0 & -4 \end{array} \right|.$

(b) Given that $y' = x - y^2$, y(0) = 0, h=0.2, find y(0.2), y(0.4) and y(0.6) 07 by Runge – Kutta third order method and hence find y(0.8) using Milne-Simpson's predictor corrector method.
