Seat No.: _

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER - I • EXAMINATION - WINTER 2012

Subject code: 610003

Date: 05/01/2013

Subject Name: Discrete Mathematics for Computer Science (DMCS) Time: 02:30 pm – 05:00 pm

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 0.1 (a) Prove that $\langle A, *_{17} \rangle$ is group, where A = {1,4,13,16} and operation $*_{17}$ 07 represents multiplication modulo 17.
 - (b) Verify validity of given argument without using truth table: 07 "If the meeting will be either in room 302 or 306 then we can find that the meeting is not in 302".
- Q.2 (a) If $A=\{1,2,3,4\}$ and $R=\{\langle x,y \rangle \mid x \rangle = y\}$. Verify! reflexive, symmetric and 07 transitive for given set of relation R.
 - (b) Define Tautology. Prove that $p \rightarrow (p V q)$ is tautology without constructing 07 truth table.

OR

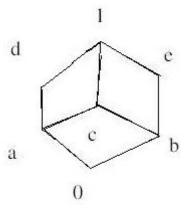
(b)

- (i) Prove that the product of an odd integer and an even integer is even. 03
- (ii) Write rule of Disjunctive Syllogism. Prove it using truth table. 04
- Q.3 (a) Define: Normal-Subgroup. Let $\langle Z_6, +_6 \rangle$ be the group and H = {0, 3} be the 07 subgroup of Z₆. Verify that H is normal subgroup of Z₆.
 - Show that (Using laws) **(b)**

(i)
$$[a^{*}(b^{*} \oplus c)]^{*} [b^{*} \oplus (a^{*}c^{*})^{*}]^{*} = a^{*}b^{*}c^{*}$$

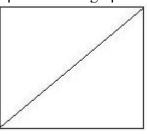
(ii) $(x \oplus y)^{*} (x^{'} \oplus y) = y$ 04

- 03
- OR Q.3 (a) Let the permutations of elements of $\{1, 2, 3, 4, 5, 6\}$ be given by 07

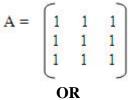

A=	$\begin{bmatrix} 1 2 3 4 5 6 \end{bmatrix}$	B = (123456
	231456	l	123546

Find AB and solve the equation AX = B.

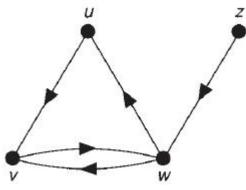
- (b) Find a minimal sum-of-product form using K-map 07 (i) $\alpha(x, y, z) = xyz + xyz' + x'yz' + x'y'z$ (ii) $\alpha(x, y, z) = xyz + xyz' + xy'z + x'yz + x'y'z$
- 0.4 (a) Define: Sub-Lattice. Show that S_6 is sub lattice of lattice $\langle S_{30}, D \rangle$. 07


(b) Draw Hasse diagram and find cover of each element of $< L^2$, $\leq >$, where ≤ 07 means (a, b) R (c, d) iff $a \le c$ and $b \le d$. L² means L x L. L={0,1}

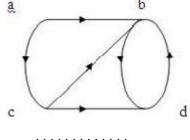
- 0.4 (a) Define: Lattice. Prove that, S_8 is lattice and draw Hasse diagram of S_8 . 07
 - (b) Define: Join-irreducible, Meet-irreducible, Atoms and Anti-Atom. 07 Determine the join-irreducible, meet-irreducible, atoms and anti-atoms for given lattice.



Q.5 (a) Define: Sub Graph. Find all possible sub graphs for the given graph


07

(b) Draw di-graph and find in-degree and out-degree of each vertex from the **07** given adjacency matrix. Using adjacency matrix, find total numbers of path of length 1 and 2 between each vertex.



Q.5 (a) State handshaking theorem. Verify handshaking theorem for the given graph 07

07

(b) Define: Node Base. Find node base for the following graph:

