GUJARAT TECHNOLOGICAL UNIVERSITY M.C.A.- SEMESTER – II • EXAMINATION – WINTER 2012

•		code: 620007 Date: 31-12-2012 Name: Theory of Computation	Date: 31-12-2012		
Time	e: 02	2:30 pm – 05:00 pm Total Marks: 70 ions:			
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.			
Q.1		 (i) List the elements of 2^{1,2,3} (ii) Describe logical quantifiers. (iii) Define relation and its properties: reflexive, symmetric and transitive. (iv) Distinguish L* and L+ (v) Give example of a function which is one-to-one but not onto. (vi) State the principle of mathematical induction. (vii) Give recursive definition of Palindrome over Σ. 	14		
Q.2	(a) (1)	Answer the following	03		
	(2)		04		
Q.2	(b)	 Define finite automaton. Draw an FA recognizing the following languages. (i) A language over {a, b} where all strings containing substring ab or bba. (ii) A language over {0, 1} where all strings that do not end with 01. 	07		
Q.2	(b)		04 03		
Q.3	(a) (b)	Define NFA. For the regular expression $aa(ba)^* + b^*aba^*$ draw an NFA- 1. An NFA with states 1-5 and input alphabet {a, b} has the following transition table. $ \frac{q \delta(q,a) \delta(q,b)}{1 \{1,2\} \{1\}} $ $ \frac{q \delta(q,a) \delta(q,b)}{2 \{3\} \{3\}} $ $ \frac{q \{3\} \{4\} \{4\}}{4 \{5\} \Phi} $ $ \frac{q \{5\} \Phi}{5 \Phi} \{5\} $	07 04		
		Draw NFA and FA. 2. Give the recursive definition of δ^* for an NFA.	03		

OR

- Define regular languages and Regular expressions over Σ . 07 Q.3 **(a)** Describe how the accepting states are considered in the FA for L1 U L2, $L1 \cap$ and L1 - L2 is drawn.
 - Draw NFA- and Transition table for the language 07 **(b)** {0}*({01}*{0}*. Convert it to NFA and FA. 07
- Q.4 Find minimum FA for the following FA **(a)**
 - $Q = \{1, 2, 3, 4, 5, 6, 7\}$ A= $\{2, 6\}$ and q0=1.

State	a	b	
1	2	3	
2	4	5	
3	6	7	
4	4	5	
5	6	7	
6	4	5	
7	6	7	

(i) State the pumping lemma for regular languages. Prove that the 07 **(b)** language L = {ww | w ε {0,1}} is not regular.

OR

- Q.4 **(a)** Define Context-Free Grammar. Describe and Derive a CFG for the 07 language {x ϵ {0,1}* | n0(x) \neq n1(x) }
 - Write a note on PDA. Design a PDA for $L = \{x \in \{0,1\}^* | n0(x) > n1(x)\}$ **(b)** 07
- (a) Define Turing machine. Draw and describe a TM accepting the language of 07 Q.5 palindromes over {a,b}.
 - (b) What do you mean by unambiguous Context free grammar? State ambiguous 07 and unambiguous grammar for the algebraic expression involved operations +, -, * and /.

OR

- Q.5 State the Chomsky Normal Form. Convert the following CFG into Comsky 07 (a) Normal Form
 - $S \rightarrow ABAC$
 - $A \rightarrow aAb \mid$
 - $B \rightarrow aBa | bBb |$
 - $C \rightarrow aC \mid a$
 - (b) Write a note on recursively enumerable languages.

07