# **GUJARAT TECHNOLOGICAL UNIVERSITY** MCA - SEMESTER-1 • EXAMINATION – WINTER 2013

#### Subject Code: 610003 Date: 23/12/2013 Subject Name: Discrete Mathematics for Computer Science (DMCS) Time: 02:30 pm TO 05:00 pm **Total Marks: 70**

**Instructions:** 

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- What do you mean by reflexive, symmetric, transitive, irreflexive, antisymmetric, 07 Q.1 (a) covering and partition?
  - (b) Draw Hasse Diagram of the poset < {2,3,5,6,9,15,24,45},D>.Find
    - (i) Maximal and Minimal elements.
    - (ii) Greatest and Least members, if exist.
    - (iii)Upper bound of  $\{6,9\}$  and Least upper bound of  $\{6,9\}$ , if exist.
    - (iv) Lower bound of  $\{24,45\}$  and greatest lower bound of  $\{24,45\}$ , if exist.
- Q.2 (a) What do you mean by "Boolean algebra"? Show that lattice  $\langle P(A), \cup, \cap \rangle$  is a Boolean 07 algebra, where  $A = \{a, b, c\}$  and P(A) denotes its power set. Draw the Hasse diagram of this Boolean algebra.
  - What do you mean by an "Equivalence relation"? Prove that the relation "congruence 07 **(b)** modulo m" given by =  $\{\langle x, y \rangle / x - y \}$  is divisible by m $\}$  over the positive integer is an equivalence relation. Also draw the relation graph for this relation using m=7 over the set  $x = \{1, 2, 3, 4, \dots, 20\}$ .

### OR

- (b) What do you mean by "compatibility relation" and "maximal compatibility block"? Let 07 the compatibility relation on a set  $\{1,2,3,4,5,6\}$  be given by the matrix
  - 2 | 1 3 1 1 4 1 1 1 5 0 1 0 0 0 0 1 0 1 6 1 2 3 4 5

Draw the graphs and find the maximal compatibility blocks of the relation.

- Q.3 (a) What do you mean by "Lattice", "Complete Lattice" and "Complement"? 07 Let the sets A,B,C,D,E,F,G,H be given by  $A = \{1, 2, 3, 4, 5, 6\}, B = \{1, 2, 3, 4, 5\}, C = \{1, 2, 3, 5, 6\}, D = \{1, 2, 3, 5\}, E = \{1, 2, 3\}, F = \{1, 2\}, A = \{1, 2, 3, 4, 5\}, C = \{1, 2, 3, 5, 6\}, D = \{1, 2, 3, 5, 6\}, C = \{1, 2, 3, 5, 6\}, C$  $G = \{1,3\}, H = \{1\}$ Draw the diagram of  $<L, \subseteq>$ , where L={A,B,C,D,E,F,G,H} 07
  - (b) What do you mean by Boolean algebra? Use the Quine McClusky method to simplify the SOP expansion,  $F(a,b,c,d) = \sum (0,2,4,6,8,10,12,14)$ And draw the circuit diagram of the minimized function.

#### OR

- Q.3 (a) What do you mean by "Symmetric Boolean expression"? Determine whether the 07 following function are symmetric or not:
  - (i) a'bc' + a'c'd + a'bcd + abc'd
  - (ii) abc' + ab'c + a'bc + ab'c' + a'bc' + a'b'c

07

- (b) Prove that  $(S_{30}, D)$  is a Boolean algebra.
- Q.4 (a) What do you mean by "Group" "Abelian group" "Normal subgroup"? Determine all the 07 subgroup of the symmetric group  $\langle S_3, \rangle \rangle$ . Is this group normal? Justify your answer.
  - (b) What do you mean by "Cyclic group"? Is  $\langle z_8, +_8 \rangle$  a cyclic group? If yes, find its **07** generators.

OR

07

- Q.4 (a) What do you mean by Sub- group? Find all the subgroup of following: (i) <Z<sub>12</sub>,+<sub>12</sub>> (ii) <Z<sub>5</sub>,+<sub>5</sub>>
  - (b) Use the Karnaugh map representation to find a minimal sum-of-product expression of 07 each of the following function:
    - (i)  $F(a,b,c)=\sum(0,1,4,6)$
    - (ii)  $F(a,b,c,d)=\sum(0,5,7,8,12,14)$
- Q.5 (a) What do you mean by isomorthic graph.Determine the graphs A and B given in figure 07 1(i),(ii) are isomorphic.





Figure-1(ii)

- (b) What do you mean by "path", "simple path" "elementary path"? For the graph given in 07 Figure-2:
  - (i) Find an elementary path of length 2 from  $v_1$  to  $v_3$ .
  - (ii) Find a simple path from  $v_1$  to  $v_3$ , which is not elementary.



Figure-2

## OR

- **Q.5** (a) Give three other representation of tree expressed by (v0(v1(v2)(v3)(v4))(v5(v6)(v7)(v8)(v9))(v10(v11)(v12)))) Obtain binary tree corresponding to it.
  - (b) What do you mean by directed tree? Draw different representation of the following 07 tree.

07



\*\*\*\*\*