GUJARAT TECHNOLOGICAL UNIVERSITY MCA - SEMESTER-II • EXAMINATION – WINTER 2013

Subject Code: 620007

Subject Name: Theory of Computation

Date: 30-12-2013

Total Marks: 70

Time: 10.30 am - 01.00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Describe the following infinite sets precisely, using a formula that does not 04 involve "...".
 - (i) $\{1/2, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{5}{8}, \frac{1}{16}, \frac{3}{16}, \frac{5}{16}, \frac{5}{16}, \dots\}$
 - (ii) $\{\{0\},\{1\},\{2\},\{3\},\ldots\}$
 - (iii) $\{\{0\}, \{0,1\}, \{0,1,2,3\}, \{0,1,2,3,4,5,6,7\}, \{0,1,2,\ldots,15\}$
 - (iv) $\{\{0\},\{0,1\},\{0,1,2\},\{0,1,2,3\},\ldots\}$
 - (b) In each case, find an expression for the indicated set, involving A,B,C and 04 the three operations, U, \cap , and '.
 - (1) $\{x | x \in A \text{ or } x \in B \text{ but not both}\}$
 - (2) $\{x | x \text{ is an element of exactly one of the three sets A,B, and C}\}$
 - (c) Define Fibonacci function (f) in terms of recursion. Prove that for every 06 $n \ge 0$, $f(n) \le (5/3)^n$
- **Q.2** (a) Answer the following
 - (1) In each case, find a string of minimum length in $\{0,1\}^*$ NOT in the **03** language corresponding to the given regular expression.
 - (1) 0*(100*)*1*
 - (2) (0+1)*0
 - (3) (11+10)*
 - (2) Find a regular expression corresponding to each of the following subsets of $04 {0,1}^*$
 - (i) The language of all strings containing either 01 or 110.
 - (ii) The language of all strings ending with 10.
 - (iii) Strings of size five or less.
 - (iv) The language of all strings containing no more than one occurrence of the sting 00.
- Q.2 (b) Define finite automaton. Draw an FA recognizing the following languages.
 07 (i) (0+1)*(01+110)
 - (ii) (0+1)*(1+00)(0+1)*

OR

- Q.2 (b) Define regular languages and Regular expressions over \sum . 07 Describe how the accepting states are considered in the FA for L1 U L2, L1 \cap L2 and L1 – L2 is drawn.
- **Q.3** (a) Define NFA and δ^* for NFA.
 - (b) Draw NFA- \wedge for the language $\{0\}^*(\{01\}^*\{1\{ U \{1\}^*\{0\}\})\}$. And convert it **07** to NFA and FA.

OR

Q.3 (a) A transition table is given for NFA- \wedge with seven states.

q	$\delta(q,a)$	$\delta(q,b)$	$\delta(\mathfrak{q},\wedge)$
1	{5}	φ	{4}
2	{1}	φ	φ
3	φ	{2}	φ

07

07

4	φ	{7}	{3}
5	φ	φ	{1}
6	φ	{5}	{4}
7	{6}	φ	Φ

Calculate $\delta * (1,ba)$

(b) Draw DFA for the regular equation $\{0,1\}^*\{10\}$ and Find minimized DFA **07** for the same.

Q.4 (a) State the pumping lemma for regular languages.
Prove that the language
$$L = \{0^{i}1^{i} \mid i \ge 0\}$$
 is not regular.

- (b) Define Context free grammar. Describe the language generated by each of 07 these grammars.
 - (1) $S \rightarrow sA \mid bC \mid b$
 - $A \rightarrow aS \mid bB$
 - $B \rightarrow aC \mid bA \mid a$
 - $C \rightarrow aB \mid bS$
 - (2) $S \rightarrow aSa \mid bSb \mid a \mid b$

OR

- Q.4 (a) Find the unambiguous context-free grammar for the language of all 07 algebraic expressions involving parenthesis, the identifier a, and the following four binary operators +, -, *, & /.
 - (b) Find context-free grammars generating each of these languages. 07 (1) $\{a^i b^j c^k | i = j + k\}$
 - (2) Palindrom over $\{0,1\}$
- Q.5 (a) Describe PDA. Find out DPDA to accept Strings with More a's than b's. 07
 - (b) Define Turing machine. Draw a transition diagram for a Turing machine 07 accepting language $\{a^ib^j \mid i < j\}$

OR

- Q.5 (a) Write a note on Recursively Enumerable and Recursive Languages. 07
 - (b) State the Chomsky Normal Form. Explain the steps involved in conversion of **07** a Context Free Grammar into a Chomsky Normal Form using appropriate example.

07