GUJARAT TECHNOLOGICAL UNIVERSITY MCA - SEMESTER-I • EXAMINATION – WINTER • 2014

	Sub	Dject Code: 2610004 Date: 01-01-2015	
	Sub	ject Name: Fundamentals of Computer Organization	
	Tin	ne: 10:30 am - 01:00 pm Total Marks: 70	
	Insti	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a)	 i) Define the following terms: register, multiplexer, latch ii) Data bits (1011) make a Even Parity Hamming Code iii) 745.81-436.62 (use 9's compliment method) iv) Convert octal number 1762.46 to hexadecimal number v) 1101.11 * 101.1 	03 01 01 01 01
	(b)	 i) State De Morgan's theorem for three variables in both the forms and give the proof for one by the method of perfect induction ii) Reduce the following Boolean expression and draw a logic diagram using AOI logic : [(A'+(A+B)')(B'+(B+C)')]' 	03 04
Q.2	(a)	 i) Which are the universal gates? Describe any one. ii) Simplify following Boolean functions using 4 variable K-map 1. F(A,B,C,D)= ∑(3,7,11,13,14,15) 2. F(A,B,C,D)= ∑(2,3,5,6,7,9,11,13) 3. F(A,B,C,D)= ∑(0,2,8,9,10,11,14,15) 4. F(A,B,C,D)= ∑(9,10,12) + d(3,5,6,7,11,13,14,15) 5. F(A,B,C,D)= ∑(0,2,4,6,8,10,12,14) 	02 05
	(b)	Write a short notes on basic components of a digital computers	07
	<i>(</i> -)	OR	~ -
	(b)	Briefly explain the working of any three peripheral devices.	07
Q.3	(a) (b)	Design and explain binary counter to count from 0 to 7 1. Explain full adder using two half adder 2. Explain integer representation of binary in digital machines. OR	07 04 03
Q.3	(a) (b)	Explain shift register with wave form and circuit diagram Explain basic working and application of Multiplexer in detail	07 07
Q.4	(a) (b)	Derive a Boolean expression (in POS form) for a 3 input gating network that will have outputs 0 when all the 3-inputs are same outputs are to be 1 for all other cases. Describe different types of buses. Explain interface of buses with processor, memory	07 07
	(0)	and I/O devices	07
		OR	
Q.4	(a)	Derive Boolean expression (in SOP form) for a logic circuit that will have a 1 output when X=0, Y=0,Z=1 and X=1 Y=1,Z=0 and a 0 output for all other input states.	07
	(b)	What do you mean by Addressing Techniques? Explain Indirect and Indexed Addressing techniques with an example.	07

05	(2)	Explain working of following instructions with example	07
Q	(a)	1 MOV	07
		$\begin{array}{c} 1. \text{MOV} \\ 2 \text{VOD} \end{array}$	
		2. AUR	
		3. CMP	
		4. NEG	
		5. AND	
		6. OR	
		7. MUL	
	(b)	Describe two-address and zero-address instruction word formats.	07
		OR	
Q.5	(a)	Draw the block diagram of 8086 and explain queue and segment registers.	07
	(b)	Explain different addressing modes of 8086 with example.	07

Q.5	(b) (a) (b)	Describe two-address and zero-address instruction word formats. OR Draw the block diagram of 8086 and explain queue and segment registers. Explain different addressing modes of 8086 with example. **********	